Skip to main content
Log in

Application of resolution of identity approximation of second-order Møller–Plesset perturbation theory to three-body fragment molecular orbital method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The resolution of identity (RI) approximation of second-order Møller–Plesset perturbation (MP2) theory, termed as RI-MP2, is applied to three-body fragment molecular orbital (FMO3) method. New implementation of FMO3 RI-MP2 is developed based on an efficient parallel RI-MP2 code developed recently in our group. Using this new implementation, the accuracy and computational time of FMO3 RI-MP2 calculations are assessed for water clusters, polyalanines, and proteins. The errors arising from RI-MP2 are sufficiently small in the FMO3 MP2 calculations that they give quantitative accuracy for practical chemical applications. Considerable time savings are attained in the FMO3 MP2 calculations with the application of RI-MP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorov DG, Kitaura K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton

    Google Scholar 

  2. Fedorov DG, Kitaura K (2006) In: Starikov EB, Lewis JP, Tanaka S (eds) Modern methods for theoretical physical chemistry of biopolymers. Elsevier, Amsterdam, pp 3–38

    Chapter  Google Scholar 

  3. Nakano T, Mochizuki Y, Fukuzawa K, Amari S, Tanaka S (2006) In: Starikov EB, Lewis JP, Tanaka S (eds) Modern methods for theoretical physical chemistry of biopolymers. Elsevier, Amsterdam, pp 39–52

    Chapter  Google Scholar 

  4. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914

    Article  CAS  Google Scholar 

  5. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  6. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  7. Fedorov DG, Kitaura K (2004) The importance of three-body terms in the fragment molecular orbital method. J Chem Phys 120:6832–6840

    Article  CAS  Google Scholar 

  8. Fedorov DG, Kitaura K (2006) The three-body fragment molecular orbital method for accurate calculations of large systems. Chem Phys Lett 433:182–187

    Article  CAS  Google Scholar 

  9. Fedorov DG, Kitaura K (2005) Coupled-cluster theory based upon the fragment molecular-orbital method. J Chem Phys 123:134103

    Google Scholar 

  10. Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S (2007) Accuracy of the three-body fragment molecular orbital method applied to Møller–Plesset perturbation theory. J Comput Chem 28:1476–1484

    Article  CAS  Google Scholar 

  11. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  12. Cremer D (1998) In: Schleyer PvR, Aliinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Shreiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, pp 1706–1735

    Google Scholar 

  13. Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem Symp 10:1–19

    Article  CAS  Google Scholar 

  14. Ishimura K, Pulay P, Nagase S (2006) A new parallel algorithm of MP2 energy calculations. J Comput Chem 27:407–413

    Article  CAS  Google Scholar 

  15. Ishimura K, Pulay P, Nagase S (2007) New parallel algorithm for MP2 energy gradient calculations. J Comput Chem 28:2034–2042

    Article  CAS  Google Scholar 

  16. Fedorov DG, Kitaura K (2004) Second order Møller–Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys 121:2483–2490

    Article  CAS  Google Scholar 

  17. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme. Theor Chem Acc 112:442–452

    Article  CAS  Google Scholar 

  18. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett 396:473–479

    Article  CAS  Google Scholar 

  19. Mochizuki Y, Yamashita K, Murase T, Nakano T, Fukuzawa K, Takematsu K, Watanabe H, Tanaka S (2008) Large scale FMO-MP2 calculations on a massively parallel-vector computer. Chem Phys Lett 457:396–403

    Article  CAS  Google Scholar 

  20. Fukuzawa K, Mochizuki Y, Tanaka S, Kitaura K, Nakano T (2006) Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. J Phys Chem B 110:16102–16110

    Article  CAS  Google Scholar 

  21. Nakanishi I, Fedorov DG, Kitaura K (2007) Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study. Proteins Struct Funct Bioinform 68:145–158

    Article  CAS  Google Scholar 

  22. Ishikawa T, Kuwata K (2009) Fragment molecular orbital calculation using the RI-MP2 method. Chem Phys Lett 474:195–198

    Article  CAS  Google Scholar 

  23. Okiyama Y, Nakano T, Yamashita K, Mochizuki Y, Taguchi N, Tanaka S (2010) Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach. Chem Phys Lett 490:84–89

    Article  CAS  Google Scholar 

  24. Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. an application in MP2 energy calculations. Chem Phys Lett 208:359–363

    Article  CAS  Google Scholar 

  25. Bernholdt DE, Harrison RJ (1996) Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers. Chem Phys Lett 250:477–484

    Article  CAS  Google Scholar 

  26. Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc 97:331–340

    Article  CAS  Google Scholar 

  27. Weigend F, Köhn A, Hättig C (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys 116:3175–3183

    Article  CAS  Google Scholar 

  28. Katouda M, Nagase S (2009) Efficient parallel algorithm of second-order Møller–Plesset perturbation theory with resolution-of-identity approximation (RI-MP2). Int J Quant Chem 109:2121–2130

    Article  CAS  Google Scholar 

  29. Rahalkar AP, Katouda M, Gadre SR, Nagase S (2010) Molecular tailoring approach in conjunction with MP2 and RI-MP2 codes: a comparison with fragment molecular orbital method. J Comput Chem 31:2405–2418

    CAS  Google Scholar 

  30. Katouda M, Nagase S (2010) Application of second-order Møller–Plesset perturbation theory with resolution-of-identity approximation to periodic systems. J Chem Phys 133:184103

    Google Scholar 

  31. Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518

    Article  CAS  Google Scholar 

  32. Kendall RA, Früchtl HA (1997) The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development. Theor Chem Acc 97:158–163

    Article  CAS  Google Scholar 

  33. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  34. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189

  35. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  36. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  37. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self—consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Shigeru Nagase for reading the manuscript carefully and giving many suggestive comments. The author also thanks Prof. Kazuo Kitaura, Dr. Hiroaki Umeda, and Dr. Dmitri G. Fedorov for fruitful discussions. This work was supported by the Nanoscience Program in the Next Generation Super Computing Project of the MEXT. Some preliminary calculations were performed at the Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Katouda.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katouda, M. Application of resolution of identity approximation of second-order Møller–Plesset perturbation theory to three-body fragment molecular orbital method. Theor Chem Acc 130, 449–453 (2011). https://doi.org/10.1007/s00214-011-1021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1021-x

Keywords

Navigation