Skip to main content
Log in

Laser control of double proton transfer in porphycenes: towards an ultrafast switch for photonic molecular wires

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Electronic excitation energy transfer along a molecular wire depends on the relative orientation of the electronic transition dipole moments of neighboring chromophores. In porphycenes, this orientation is changed upon double proton transfer in the electronic ground state. We explore the possibility to trigger such a double proton transfer reaction by means of an infrared pump-dump laser control scheme. To this end, a quantum chemical characterization of an asymmetrically substituted porphycene is performed using density functional theory. Ground state geometries, the topology of the potential energy surface for double proton transfer, and \(\hbox{S}_0\rightarrow\hbox{S}_1\) transition energies are compared with the parent compound porphycene and a symmetric derivative. Employing a simple two-dimensional model for the double proton transfer, which incorporates sequential and concerted motions, quantum dynamics simulations of the laser-driven dynamics are performed which demonstrate tautomerization control. Based on the orientation of the transition dipole moments, this tautomerization may lead to an estimated change in the Förster transfer coupling of about 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balzani V, Credi A, Venturi M (2003) Molecular devices and machines. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Wagner RW, Lindsey JS (1994) J Am Chem Soc 116:9759

    Article  CAS  Google Scholar 

  3. Wagner R, Johnson T, Lindsey J (1996) J Am Chem Soc 118:11166

    Article  CAS  Google Scholar 

  4. Hsiao J, Krueger B, Wagner R, Johnson T, Delaney J, Mauzerall D, Fleming G, Lindsey J, Bocian D, Donohoe R (1996) J Am Chem Soc 118:11181

    Article  CAS  Google Scholar 

  5. Seth J, Palaniappan V, Wagner R, Johnson T, Lindsey J, Bocian D (1996) J Am Chem Soc 118:11194

    Article  CAS  Google Scholar 

  6. Li J, Ambroise A, Yang S, Diers J, Seth J, Wack C, Bocian D, Holten D, Lindsey J (1999) J Am Chem Soc 121:8927

    Article  CAS  Google Scholar 

  7. Ambroise A, Wagner R, Rao P, Riggs J, Hascoat P, Diers J, Seth J, Lammi R, Bocian D, Holten D, Lindsey J (2001) Chem Mater 13:1023

    Article  CAS  Google Scholar 

  8. Lammi R, Wagner R, Ambroise A, Diers J, Bocian D, Holten D, Lindsey J (2001) J Phys Chem B 105:5341

    Article  CAS  Google Scholar 

  9. Holten D, Bocian D, Lindsey J (2002) Acc Chem Res 35:57

    Article  CAS  Google Scholar 

  10. Song H, Taniguchi M, Diers JR, Kirmaier C, Bocian DF, Lindsey JS, Holten D (2009) J Phys Chem B 113:16483

    Article  CAS  Google Scholar 

  11. Heilemann M, Tinnefeld P, Mosteiro G, Garcia-Parajo M, Hulst NV, Sauer M (2004) J Am Chem Soc 126:6514

    Article  CAS  Google Scholar 

  12. Tinnefeld P, Heilemann M, Sauer M (2005) Chem Phys Chem 6:217

    CAS  Google Scholar 

  13. Sanchez-Mosteiro G, van Dijk EMHP, Hernando J, Heilemann M, Tinnefeld P, Sauer M, Koberlin F, Patting M, Wahl M, Erdmann R, van Hulst NF, Garcia-Parajo MF (2006) J Phys Chem B 110:26349

    Article  CAS  Google Scholar 

  14. Heilemann M, Kasper R, Tinnefeld P, Sauer M (2006) J Am Chem Soc 128:16864

    Article  CAS  Google Scholar 

  15. Vyawahare S, Eyal S, Mathews K, Quake S (2004) Nano Lett 4:1035

    Article  CAS  Google Scholar 

  16. Bahr J, Kodis G, de la Garza L, Lin S, Moore A, Moore T, Gust D (2001) J Am Chem Soc 123:7124

    Article  CAS  Google Scholar 

  17. Wagner R, Lindsey J, Seth J, Palaniappan V, Bocian D (1996) J Am Chem Soc 118:3996

    Article  CAS  Google Scholar 

  18. Akasaka T, Otsuki J, Araki K (2002) Chem Eur J 8:130

    Article  CAS  Google Scholar 

  19. Albelda M, Diaz P, Garcia-Espana E, Lima J, Lodeiro C, de Melo J, Parola A, Pina F, Soriano C (2002) Chem Phys Lett 353:63

    Article  CAS  Google Scholar 

  20. Otsuki J, Akasaka T, Araki K (2008) Coord Chem Rev 252:32

    CAS  Google Scholar 

  21. Straight SD, Liddell PA, Terazono Y, Moore TA, Moore AL, Gust D (2007) Adv Funct Mater 17:777

    Article  CAS  Google Scholar 

  22. Abdel-Latif MK, Kühn O (2010) Chem Phys 368:76

    Article  CAS  Google Scholar 

  23. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems, 3rd revised and enlarged edition. Wiley-VCH, Weinheim

    Google Scholar 

  24. Waluk J (2007) In: Hynes J, Klinman J, Limbach H-H, Schowen R (eds) Hydrogen transfer reactions. VCH-Wiley, Weinheim, p 245

    Google Scholar 

  25. Gil M, Jasny J, Vogel E, Waluk J (2000) Chem Phys Lett 323:534

    Article  CAS  Google Scholar 

  26. Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  27. Meyer H-D, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73

    Article  CAS  Google Scholar 

  28. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) Phys Rep 324:1

    Article  CAS  Google Scholar 

  29. Worth G, Beck M, Jäckle A, Meyer H-D (2007) The MCTDH package, Version 8.4. University of Heidelberg, Heidelberg

    Google Scholar 

  30. Meyer H-D, Quere FL, Leonard C, Gatti F (2006) Chem Phys 329:179

    Article  CAS  Google Scholar 

  31. Smedarchina Z, Shibl MF, Kühn O, Fernández-Ramos A (2007) Chem Phys Lett 436:314

    Article  CAS  Google Scholar 

  32. Shibl MF, Pietrzak M, Limbach H-H, Kühn O (2007) Chem Phys Chem 8:315

    CAS  Google Scholar 

  33. Smedarchina Z, Siebrand W, Fernandez-Ramos A (2007) J Chem Phys 127:174513

    Article  Google Scholar 

  34. Smedarchina Z, Siebrand W, Fernández-Ramos A, Meana-Pañeda R (2008) Z Phys Chem 222:1291

    CAS  Google Scholar 

  35. Korolkov MV, Manz J, Paramonov GK (1996) J Chem Phys 105:10874

    Article  CAS  Google Scholar 

  36. Došlić N, Kühn O, Manz J (1998) Ber Bunsenges Phys Chem 102:292

    Google Scholar 

  37. Waluk J, Muller M, Swiderek P, Kocher M, Vogel E, Hohlneicher G, Michl J (1991) J Am Chem Soc 113:5511

    Article  CAS  Google Scholar 

  38. Parac M, Grimme S (2002) J Phys Chem A 106:6844

    Article  CAS  Google Scholar 

  39. Sobolewski AL, Gil M, Dobkowski J, Waluk J (2009) J Phys Chem A 113:7714

    Article  CAS  Google Scholar 

  40. Giese K, Petković M, Naundorf H, Kühn O (2006) Phys Rep 430:211

    Article  CAS  Google Scholar 

  41. Waluk J (2006) Acc Chem Res 39:945

    Article  CAS  Google Scholar 

  42. Waluk J (2009) Chem Phys Chem 10:761

    Google Scholar 

  43. Walewski L, Waluk J, Lesyng B (2010) J Phys Chem A 114:2313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been in part financially supported by a scholarship from the Ministry of Higher Education of the Arab Republic of Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Latif, M.K., Kühn, O. Laser control of double proton transfer in porphycenes: towards an ultrafast switch for photonic molecular wires. Theor Chem Acc 128, 307–316 (2011). https://doi.org/10.1007/s00214-010-0847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0847-y

Keywords

Navigation