Skip to main content
Log in

Impact of Vibrations and Electronic Coherence on Electron Transfer in Flat Molecular Wires

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Electron transfer in molecular wires are of fundamental importance for a range of optoelectronic applications. The impact of electronic coherence and ionic vibrations on transmittance are of great importance to determine the mechanisms, and subsequently the type of wires that are most promising for applications. In this work, we use the real-time formulation of time-dependent density functional theory to study electron transfer through oligo-p-phenylenevinylene (OPV) and the recently synthesized carbon bridged counterpart (COPV). A system prototypical of organic photovoltaics is setup by bridging a porphyrin-fullerene dyad, allowing a photo-excited electron to flow between the Zn-porphyrin (ZnP) chromophore and the C60 electron acceptor through the molecular wire. The excited state is described using the fully self-consistent ∆-SCF method. The state is then propagated in time using the real-time TD-DFT scheme, while describing ionic vibrations with classical nuclei. The charge transferred between porphyrin and C60 is calculated and correlated with the velocity autocorrelation functions of the ions. This provides a microscopic insight to vibrational and tunneling contributions to electron transport in linked porphyrin-fullerene dyads. We elaborate on important details in describing the excited state and trajectory sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pittalis, A. Delgado, J. Robin, L. Freimuth, J. Christoffers, C. Lienau, and C.A. Rozzi, Adv. Funct. Mater., 25, 2047–2053 (2015).

    Article  CAS  Google Scholar 

  2. S.M. Falke, C.A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, Science, 344, 1001–1005 (2014).

    Article  CAS  Google Scholar 

  3. G. de la Torre, F. Giacalone, J.L. Segura, N. Martín, and D.M. Guldi, Chem. Eur. J., 11, 1267–1280 (2005).

    Article  Google Scholar 

  4. X. Zhu, H. Tsuji, J.T. López Navarrete, J. Casado, and E. Nakamura, J. Am. Chem. Soc., 134, 19254–19259 (2012).

    Article  CAS  Google Scholar 

  5. J. Sukegawa, C. Schubert, X. Zhu, H. Tsuji, D.M. Guldi, and E. Nakamura, Nat. Chem., 6, 899–905 (2014).

    Article  CAS  Google Scholar 

  6. S. Meng and E. Kaxiras, J. Chem. Phys, 129, 054110 (2008).

    Article  Google Scholar 

  7. G. Kolesov, O. Grånäs, and R. Hoyt, J. Chem. Theory Comput., 12, 466–476 (2016).

    Article  CAS  Google Scholar 

  8. G. Kolesov, D. Vinichenko, G.A. Tritsaris, C.M. Friend, and E. Kaxiras, J. Phys. Chem. Lett, 6, 1624–1627 (2015).

    Article  CAS  Google Scholar 

  9. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys. Condens. Matter, 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  10. L. Kleinman and D.M. Bylander, Phys. Rev. Lett., 48, 1425–1428 (1982).

    Article  CAS  Google Scholar 

  11. J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  12. N.L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari, Phys. Rev. Lett., 114, 166405 (2015).

    Article  Google Scholar 

  13. F.L. Hirshfeld, Theoret. Chim. Acta, 44, 129–138 (1977).

    Article  CAS  Google Scholar 

  14. K. Lopata and N. Govind, J. Chem. Theory. Comput., 7, 1344–1355 (2011).

    Article  CAS  Google Scholar 

  15. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett., 94, 223307–4 (2009).

    Article  Google Scholar 

  16. O. Grånäs, D. Vinichenko, and E. Kaxiras, Sci. Rep, 6, 1–6 (2016).

    Article  Google Scholar 

  17. B. Monserrat, G.J. Conduit, and R.J. Needs, Phys. Rev. B, 90, 184302 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grånäs, O., Kolesov, G. & Kaxiras, E. Impact of Vibrations and Electronic Coherence on Electron Transfer in Flat Molecular Wires. MRS Advances 2, 811–816 (2017). https://doi.org/10.1557/adv.2017.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.157

Navigation