Skip to main content
Log in

Assessment of the ωB97 family for excited-state calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We benchmark three recently proposed range-separated hybrids, namely ωB97, ωB97X and ωB97XD in the framework of time-dependent density functional theory simulations of electronic absorption spectra. Comparisons are made with both theoretical estimates obtained by highly correlated approaches and experimental wavelengths of maximal absorption measured for important classes of \(\pi \rightarrow \pi^\ast\) and \(n \rightarrow \pi^\ast\) chromogens. The amplitude of the errors induced by the lack of vibronic coupling in our computational model is also evaluated for five dyes. The performances of the ωB97 group are systematically compared to the results of other global and range-separated hybrids. It turns out that ωB97XD provides, in general, more accurate estimates than ωB97X and ωB97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  2. Perdew JP, Ruzsinszky A, Constantin LA, Sun J, Csonka GI (2009) J Chem Theory Comput 5:902

    Article  CAS  Google Scholar 

  3. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  4. Boese AD, Martin JML (2004) J Chem Phys 121:3405

    Article  CAS  Google Scholar 

  5. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  6. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  7. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  8. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8:4398

    Article  CAS  Google Scholar 

  9. Grimme S, Neese F (2007) J Chem Phys 127:154116

    Article  Google Scholar 

  10. Savin A (1966) In: Seminario JM (eds) Recent developments and applications of modern density functional theory, Chap 9. Elsevier, Amsterdam, pp 327–354

  11. Leininger T, Stoll H, Werner HJ, Savin A (1997) Chem Phys Lett 275:151

    Article  CAS  Google Scholar 

  12. Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70:062505

    Article  Google Scholar 

  13. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  14. Tawada T, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  15. Chiba M, Tsuneda T, Hirao K (2006) J Chem Phys 124:144106

    Article  Google Scholar 

  16. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  17. Yanai T, Harrison RJ, Handy NC (2005) Mol Phys 103:413

    Article  CAS  Google Scholar 

  18. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  Google Scholar 

  19. Vydrov OA, Heyd J, Krukau V, Scuseria GE (2006) J Chem Phys 125:074106

    Article  Google Scholar 

  20. Livshits E, Baer R (2007) Phys Chem Chem Phys 9:2932

    Article  CAS  Google Scholar 

  21. Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  22. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  23. Sekino H, Maeda Y, Kamiya M (2005) Mol Phys 103:2183

    Article  CAS  Google Scholar 

  24. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111

    Article  Google Scholar 

  25. Jacquemin D, Perpète EA, Medved’ M, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:191108

    Article  Google Scholar 

  26. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2008) J Comput Chem 29:921

    Article  CAS  Google Scholar 

  27. Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, Tsuneda T (2010) J Chem Phys 132:094107

    Article  Google Scholar 

  28. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105

    Article  Google Scholar 

  29. Peach MJG, Tellgren E, Salek P, Helgaker T, Tozer DJ (2007) J Phys Chem A 111:11930

    Article  CAS  Google Scholar 

  30. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  31. Casida ME (1995) Dsgr. In: Chong DP (ed) Time-dependent density-functional response theory for molecules, volume 1 of Recent advances in density functional methods. World Scientific, Singapore, pp 155–192

  32. Rudberg E, Salek P, Helgaker T, Agren H (2005) J Chem Phys 123:184108

    Article  Google Scholar 

  33. Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) J Phys Chem B 110:15624

    Article  CAS  Google Scholar 

  34. Kobayashi R, Amos RD (2006) Chem Phys Lett 420:106

    Article  CAS  Google Scholar 

  35. Lange AW, Rohrdanz MA, Herbert JM (2008) J Phys Chem B 112:6304

    Article  CAS  Google Scholar 

  36. Jensen L, Govind N (2009) J Phys Chem A 113:9761

    Article  CAS  Google Scholar 

  37. Aittala PJ, Cramariuc O, Hukka TI (2010) J Chem Theory Comput 6:805

    Article  CAS  Google Scholar 

  38. Peach MJG, Cohen AJ, Tozer DJ (2006) Phys Chem Chem Phys 8:4543

    Article  CAS  Google Scholar 

  39. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118

    Article  Google Scholar 

  40. Rohrdanz MA, Herbert JM (2008) J Chem Phys 129:034107

    Article  Google Scholar 

  41. Rohrdanz MA, Martins KM, Herbert JM (2009) J Chem Phys 130:054112

    Article  Google Scholar 

  42. Jacquemin D, Perpète EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102

    Article  Google Scholar 

  43. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123

    Article  CAS  Google Scholar 

  44. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226

    Article  CAS  Google Scholar 

  45. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) J Chem Theory Comput 5:2420

    Article  CAS  Google Scholar 

  46. Caricato M, Trucks GW, Frisch MJ, Wiberg KB (2010) J Chem Theory Comput 6:370

    Article  CAS  Google Scholar 

  47. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2010) J Chem Theory Comput 6:1532

    Article  CAS  Google Scholar 

  48. Jacquemin D, Perpète EA, Ciofini I, Adamo C, Valero R, Zhao Y, DG Truhlar (2010) J Chem Theory Comput 6:2071

    Google Scholar 

  49. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110

    Article  Google Scholar 

  50. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2008) J Chem Phys 129:104103

    Article  Google Scholar 

  51. Sauer SPA, Schreiber M, Silva-Junior MR, Thiel W (2009) J Chem Theory Comput 5:555

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.02, Gaussian Inc., Wallingford CT

  53. Becke AD (1997) J Chem Phys 107:8544

    Article  Google Scholar 

  54. Goerigk L, Moellmann J, Grimme S (2009) Phys Chem Chem Phys 11:4611

    Article  CAS  Google Scholar 

  55. Silva-Junior MR, Thiel W (2010) J Chem Theory Comput 6:1546

    Article  CAS  Google Scholar 

  56. Silva-Junior MR, Sauer SPA, Schreiber M, Thiel W (2010) Mol Phys 108:453

    Article  CAS  Google Scholar 

  57. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326

    Article  CAS  Google Scholar 

  58. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  59. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889

    Article  CAS  Google Scholar 

  60. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  61. For the records, the reader should be aware that the details of the PCM parameters (UAKS/UA0 radii, presence/absence of smoothing spheres...) might vary from one family of dye to the other

  62. Cossi R, Barone V (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  63. Dierksen M, Grimme S (2004) J Phys Chem A 108:10225

    Article  CAS  Google Scholar 

  64. Santoro F, Improta R, Lami A, Bloino J, Barone V (2007) J Chem Phys 126:184102

    Article  Google Scholar 

  65. Jacquemin D, Peltier C, Ciofini I (2010) Chem Phys Lett 493:67

    Article  CAS  Google Scholar 

  66. Goerigk L, Grimme S (2010) J Chem Phys 132:184103

    Article  Google Scholar 

  67. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J Am Chem Soc 128:2072

    Article  CAS  Google Scholar 

  68. Jacquemin D, Bouhy M, Perpète EA (2006) J Chem Phys 124:204321

    Article  Google Scholar 

  69. Jacquemin D, Michaux C, Perpète EA, Maurel F, Perrier A (2010) Chem Phys Lett 488:193

    Article  CAS  Google Scholar 

  70. Perrier A, Maurel F, Perpète EA, Wathelet V, Jacquemin D (2009) J Phys Chem A 113:13004

    Article  CAS  Google Scholar 

  71. Schreiber M, Bub V, Fülscher MP (2001) Phys Chem Chem Phys 3:3906

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DJ and EAP thank the Belgian National Fund for Scientific Research for their research associate and senior research associate positions, respectively. Several calculations have been performed on the Interuniversity Scientific Computing Facility (ISCF), installed at the Facultés Universitaires Notre-Dame de la Paix (Namur, Belgium), for which the authors gratefully acknowledge the financial support of the FNRS-FRFC and the “Loterie Nationale” for the convention number 2.4578.02 and of the FUNDP. The collaboration between the Belgian and French groups is supported by the Wallonie-Bruxelles International, the Fonds de la Recherche Scientfique, the Ministère Français des Affaires étragères et européennes, the Ministère de l’Enseignement supérieur et de la Recherche in the framework of Hubert Curien Partnership.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis Jacquemin or Carlo Adamo.

Electronic supplementary material

Tables with all transition energies for both the VT and VE sets, as well as experimental references. Below is the link to the electronic supplementary material.

PDF (296 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacquemin, D., Perpète, E.A., Ciofini, I. et al. Assessment of the ωB97 family for excited-state calculations. Theor Chem Acc 128, 127–136 (2011). https://doi.org/10.1007/s00214-010-0783-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0783-x

Keywords

Navigation