Skip to main content
Log in

Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Calculations of vertical excited states of a strongly coupled chlorophyll pair and a carotenoid–chlorophyll complex stemming from the light harvesting complex II of green plants employing the experimentally determined crystal structures and quantum chemically re-optimized model complexes demonstrate the need for preceding re-optimizations of the experimental structures at quantum chemical level. While in the case of the chlorophyll dimers, the re-optimization step is crucial for a correct description of the coupling of the excited states, in carotenoid–chlorophyll complexes the S1 excitation energies of carotenoids depend strongly on the structure, in particular on the correct bond lengths alternation pattern of its conjugated double bond chain, which is not sufficiently accurately reproduced by experimental structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Friesner RA, Guallar V (2005) Annu Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  2. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  3. Senn HM, Thiel W (2007) Curr Opin Chem Biol 11:182–187

    Article  CAS  Google Scholar 

  4. Green BR, Parson WW (2003) Light-harvesting antennas in photosynthesis. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  5. van Amerongen H, Dekker JP (2003) Light harvesting in photosystem II. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 219–251

    Google Scholar 

  6. Allen JF, Forsberg J (2001) Trends Plant Sci 6:317–326

    Article  CAS  Google Scholar 

  7. Demmig B, Winter K, Krüger A, Czygan F-C (1987) Plant Physiol 84:218–224

    Article  CAS  Google Scholar 

  8. Horton P, Ruban AV, Walters RG (1996) Annu Rev Plant Physiol Plant Mol Biol 47:665–684

    Article  Google Scholar 

  9. Niyogi KK (1999) Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  CAS  Google Scholar 

  10. Kühlheim C, Ågren S, Jansson S (2002) Science 297:91–93

    Article  Google Scholar 

  11. Holt NE, Fleming GR, Niyogi KK (2004) Biochemistry 43:8281–8289

    Article  CAS  Google Scholar 

  12. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Nature 428:287–292

    Article  CAS  Google Scholar 

  13. Standfuss J, van Scheltinga ATerwisscha, Lamborghini M, Kühlbrandt W (2005) EMBO J 24:919–928

    Article  CAS  Google Scholar 

  14. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  16. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8:3172

    Article  CAS  Google Scholar 

  17. Neese F (2006) Orca Quantum Chemistry Package, Version 2.6.35. University of Bonn, Germany

    Google Scholar 

  18. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  19. Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods part I. World Scientific, Singapore, pp 155–192

  20. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4007

    Article  Google Scholar 

  21. Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291

    Article  CAS  Google Scholar 

  22. Hsu CP, Hirata S, Head-Gordon M (2001) J Phys Chem A 105:451

    Article  CAS  Google Scholar 

  23. Dreuw A, Fleming GR, Head-Gordon M (2003) J Phys Chem B 107:6500

    Article  CAS  Google Scholar 

  24. Dreuw A, Fleming GR, Head-Gordon M (2003) Phys Chem Chem Phys 5:3247

    Article  CAS  Google Scholar 

  25. Starcke JH, Wormit M, Schirmer J, Dreuw A (2006) Chem Phys 329:39

    Article  CAS  Google Scholar 

  26. Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943

    Article  CAS  Google Scholar 

  27. Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007

    Article  CAS  Google Scholar 

  28. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Nature 436:134

    Article  CAS  Google Scholar 

  29. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Nature 450:575–578

    Article  CAS  Google Scholar 

  30. Wormit M, Harbach PHP, Mewes JM, Amarie S, Wachtveitl J, Dreuw A (2009) BBA Bioenergetics 1787:738

    Article  CAS  Google Scholar 

  31. Marian CM, Gilka N (2008) J Chem Theory Comp 4:1501–1515

    Article  CAS  Google Scholar 

  32. Wormit M, Dreuw A (2006) J Phys Chem B 110:24200–24206

    Article  CAS  Google Scholar 

  33. Wormit M, Dreuw A (2007) Phys Chem Chem Phys 9:2917

    Article  CAS  Google Scholar 

  34. Dreuw A (2006) Chem Phys Chem 7:2259

    CAS  Google Scholar 

  35. Rogl H, Kühlbrandt W (1999) Biochemistry 38:16214–16222

    Article  CAS  Google Scholar 

  36. Schubert A, Beenken WJD, Stiel H, Voigt B, Leupold D, Lokstein Heiko (2002) Biophys J 82:1030–1039

    Article  CAS  Google Scholar 

  37. van Amerongen H, van Grondelle R (2001) J Phys Chem B 105:604–617

    Article  Google Scholar 

Download references

Acknowledgments

A.D. gratefully acknowledges financial support by the German Science Foundation as Heisenberg-Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dreuw.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreuw, A., Harbach, P.H.P., Mewes, J.M. et al. Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor Chem Acc 125, 419–426 (2010). https://doi.org/10.1007/s00214-009-0680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0680-3

Keywords

Navigation