Skip to main content
Log in

Competing gas-phase fragmentation pathways of asparagine-, glutamine-, and lysine-containing protonated dipeptides

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The fragmentation chemistry of protonated H–Val–Asn–OH, H–Val–Gln–OH and H–Val–Lys–OH is investigated in this work by means of modeling and density functional theory calculations. Former experimental studies indicate that the ratio of a 1 and y 1 ions cannot be explained by considering the proton affinities of the corresponding dissociating species on the a 1y 1 pathway, while the fragmentation of other dipeptides can be understood in this way. We demonstrate that considering the correct PA value for H–Asn–OH eliminates the deviation observed for H–Val–Asn–OH. The larger than expected a 1/y 1 ratio of H–Val–Gln–OH is explained by considering the dissociation kinetics of the proton-bound dimers formed on the a 1y 1 pathway and competition of the deamidation and a 1y 1 channels. For H–Val–Lys–OH, it is proposed that a 1 ions are indeed formed from one of the primary products, protonated H–Val–Cap–OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4

Similar content being viewed by others

References

  1. Aebersold R, Goodlett DR (2001) Chem Rev 101:269

    Article  CAS  Google Scholar 

  2. Paizs B, Suhai S (2005) Mass Spectrom Rev 24:508

    Article  CAS  Google Scholar 

  3. Paizs B, van Stipdonk M (2008) J Am Soc Mass Spectrom 19:1717 and papers in this focus issue on peptide fragmentation

    Article  CAS  Google Scholar 

  4. Roepstorff P, Fohlmann J (1984) J Biomed Mass Spectrom 11:601

    Article  CAS  Google Scholar 

  5. Biemann K (1988) Biomed Environ Mass Spectrom 16:99

    Article  CAS  Google Scholar 

  6. Morgan DG, Bursey MM (1994) Org Mass Spectrom 29:354

    Article  CAS  Google Scholar 

  7. Morgan DG, Bursey MM (1995) J Mass Spectrom 30:595

    Article  CAS  Google Scholar 

  8. Harrison AG, Csizmadia IG, Tang TH, Tu YP (2000) J Mass Spectrom 35:683

    Article  CAS  Google Scholar 

  9. Paizs B, Suhai S (2001) Rapid Commun Mass Spectrom 15:651

    Article  CAS  Google Scholar 

  10. Paizs B, Schnölzer M, Warnken U, Suhai S, Harrison AG (2004) Phys Chem Chem Phys 6:2691

    Article  CAS  Google Scholar 

  11. Wysocki VH, Tsaprailis G, Smith LL, Breci LA (2000) J Mass Spectrom 35:1399

    Article  CAS  Google Scholar 

  12. Paizs B, Suhai S (2002) Rapid Commun Mass Spectrom 16:1699

    Article  CAS  Google Scholar 

  13. Cooks RG, Kruger TL (1977) J Am Chem Soc 99:1279

    Article  CAS  Google Scholar 

  14. McLuckey SA, Cameron D, Cooks RG (1981) J Am Chem Soc 103:1313

    Article  CAS  Google Scholar 

  15. Harrison AG (1999) J Mass Spectrom 34:577

    Article  CAS  Google Scholar 

  16. Pingitore F, Polce MJ, Wang P, Wesdemiotis C, Paizs B (2004) J Am Soc Mass Spectrom 15:1025

    Article  CAS  Google Scholar 

  17. Wyttenbach T, Paizs B, Barran P, Breci L, Liu D, Suhai S, Wysocki VH, Bowers MT (2003) J Am Chem Soc 125:13768

    Article  CAS  Google Scholar 

  18. Paizs B, Suhai S (2004) J Am Soc Mass Spectrom 15:103

    Article  CAS  Google Scholar 

  19. Polfer NC, Oomens J, Suhai S, Paizs B (2005) J Am Chem Soc 127:17154

    Article  CAS  Google Scholar 

  20. Harrison AG, Young AB, Bleiholder C, Suhai S, Paizs B (2006) J Am Chem Soc 128:10364

    Article  CAS  Google Scholar 

  21. Polfer NC, Oomens J, Suhai S, Paizs B (2007) J Am Chem Soc 129:5887

    Article  CAS  Google Scholar 

  22. Bleiholder C, Osburn S, Williams TD, Suhai S, Van Stipdonk M, Harrison AG, Paizs B (2008) J Am Chem Soc 130:17774

    Article  CAS  Google Scholar 

  23. Case DA et al AMBER 99, University of California, San Francisco

  24. Frisch MJ et al (1995) Gaussian, Inc., Pittsburgh PA

  25. Bleiholder C, Suhai S, Paizs B (2006) J Am Soc Mass Spectrom 17:1275

    Article  CAS  Google Scholar 

  26. Harrison AG (1997) Mass Spectrom Rev 16:201

    Article  CAS  Google Scholar 

  27. Harrison AG (2003) J Mass Spectrom 38:174

    Article  CAS  Google Scholar 

  28. Heaton AL, Armentrout PB (2009) J Am Soc Mass Spectrom 20:852

    Article  CAS  Google Scholar 

  29. Paizs B, Suhai S (2001) Rapid Commun Mass Spectrom 15:2307

    Article  CAS  Google Scholar 

  30. Dookeran NN, Yalcin T, Harrison AG (1996) J Mass Spectrom 31:500

    Article  CAS  Google Scholar 

  31. Csonka IP, Paizs B, Lendvay G, Suhai S (2001) Rapid Commun Mass Spectrom 15:1457

    Article  CAS  Google Scholar 

  32. Laerdahl JK, Uggerud E (2002) Int J Mass Spectrom 214:277

    Article  CAS  Google Scholar 

  33. Gritsenko OV, Ensing B, Schipper PRT, Baerends EJ (2000) J Phys Chem A 104:8558

    Article  CAS  Google Scholar 

  34. Yalcin T, Harrison AG (1996) J Mass Spectrom 31:1237

    Article  CAS  Google Scholar 

  35. Balta B, Aviyente V, Lifshitz C (2003) J Am Soc Mass Spectrom 14:1192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BP is grateful for the financial support from the DFG (SU 244/3-1). CB is grateful for a fellowship of the DKFZ International Ph.D. Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Paizs.

Additional information

Dedicated to Prof. Sándor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleiholder, C., Paizs, B. Competing gas-phase fragmentation pathways of asparagine-, glutamine-, and lysine-containing protonated dipeptides. Theor Chem Acc 125, 387–396 (2010). https://doi.org/10.1007/s00214-009-0658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0658-1

Keywords

Navigation