Skip to main content
Log in

Excitation of the M intermediates of wild-type bacteriorhodopsin and mutant D96N: temperature dependence of absorbance, electric responses and proton movements

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The simplest proton pump known in biological systems, bacteriorhodopsin (bR), is the first ion-transporting membrane protein, the function of which can be described at the atomic level, with the aid of molecular dynamics calculations. To get additional experimental support for the proposed atomic level description of the function of bR, we studied a quasi-stable state of the protein molecule, the so-called M intermediate that plays a crucial role in the proton pumping process. The temperature dependence of the light-induced events occurring in the photocycle of wild-type bacteriorhodopsin and its mutant D96N were followed in detail. Absorbance changes, electric signals generated by charge motion inside the protein, and movement of protons in the protein solution interface either forward (proton release due to excitation of bR) or backward (uptake of protons due to the M excitation: “back-take”) were monitored. The obtained Arrhenius parameters indicate that the proton back-take is triggered by charge rearrangements in the protein similar to the proton release triggered by those during the L → M transition. The time necessary for proton back-take determines the reconstitution time of the bR ground state. The data are expected to be used in theoretical modeling of the bR function. Based on these results, a more detailed photocycle model is established to describe the proton pumping mechanism, implying a formal principle ("domino model") that is expected to hold also for other charge transfer proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stoeckenius W (1999) Protein Sci 8:447

    CAS  Google Scholar 

  2. Lanyi JK (2000) Biochim Biophys Acta 1460:1

    Article  CAS  Google Scholar 

  3. Balashov SP (1995) Israel J Chem 35:415

    CAS  Google Scholar 

  4. Hessling B, Herbst J, Rammelsberg R, Gerwert K (1997) Biophys J 73:2071

    Article  CAS  Google Scholar 

  5. Dér A, Keszthelyi L (2001) Biochemistry (Moscow) 66:1234

    Article  Google Scholar 

  6. Karvaly B, Dancsházy Zs (1977) FEBS Lett 76:36

    Article  CAS  Google Scholar 

  7. Ormos P, Dancsházy Zs, Keszthelyi L (1980) Biophys J 31:207

    Article  CAS  Google Scholar 

  8. Dickopf S, Heyn MP (1997) Biophys J 73:3171

    Article  CAS  Google Scholar 

  9. Ludmann K, Ganea C, Váró G (1999) J Photochem Photobiol B 49:23

    Article  CAS  Google Scholar 

  10. Ormos P, Reinisch L, Keszthelyi L (1983) Biochim Biophys Acta 722:471

    Article  CAS  Google Scholar 

  11. Trissl HW, Gärtner W, Leibl W (1989) Chem Phys Lett 158:515

    Article  CAS  Google Scholar 

  12. Tóth-Boconádi R, Dér A, Taneva SG, Keszthelyi L (2006) Biophys J 90:2651

    Article  Google Scholar 

  13. Tóth-Boconádi R, Taneva SG, Keszthelyi L (2001) J Biol Phys Chem 1:58

    Article  Google Scholar 

  14. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Science 286:255

    Article  CAS  Google Scholar 

  15. Hayashi S, Tajkhorshid E, Schulten K (2002) Biophys J 83:1281

    Article  CAS  Google Scholar 

  16. Murata K, Fuji Y, Nobuyuki E, Hata M, Hoshino T, Tsuda M (2000) Biophys J 79:982

    Article  CAS  Google Scholar 

  17. Bondar A-N, Suhai S, Fischer S, Smith JC, Elstner M (2007) J Struct Biol 157:454

    Article  CAS  Google Scholar 

  18. Song Y, Mao J, Gunner MR (2003) Biochemistry 42:9875

    Article  CAS  Google Scholar 

  19. Rousseau R, Kleinschidt W, Schmitt UW, Marx D (2004) Angew Chem Int Ed 43:4804

    Article  CAS  Google Scholar 

  20. Garczarek F, Gerwert K (2006) Nature 439:109

    Article  CAS  Google Scholar 

  21. Phatak P, Ghosh N, Yu H, Cui Q, Elstner M (2009) Proc Natl Acad Sci USA 105:19672

    Article  Google Scholar 

  22. Dér A, Oroszi L, Kulcsár Á, Zimányi L, Tóth-Boconádi R, Keszthelyi L, Stoeckenius W, Ormos P (1999) Proc Natl Acad Sci USA 96:2776

    Article  Google Scholar 

  23. Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R (2000) Nature 406:645

    Article  CAS  Google Scholar 

  24. Lanyi JK, Schobert B (2003) J Mol Biol 328:439

    Article  CAS  Google Scholar 

  25. Kouyama T, Nishikawa T, Tokuhisa T, Okamura H (2004) J Mol Biol 335:469

    Article  Google Scholar 

  26. Edman K, Royant A, Larsson G, Jacobson F, Taylor T, Van Der EM, Landau EM, Pebay-Peyroula E, Neutze R (2004) J Biol Chem 279:2147

    Article  CAS  Google Scholar 

  27. Sass HJ, Büldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P (2000) Nature 406:649

    Article  CAS  Google Scholar 

  28. Tóth-Boconádi R, Dér A, Fábián L, Taneva SG, Keszthelyi L (2009) Photochem Photobiol 85:609

    Article  Google Scholar 

  29. Tóth-Boconádi R, Taneva SG, Fábián L, Dér A, Keszthelyi L (2007) J Biol Phys Chem 7:147

    Article  Google Scholar 

  30. Dér A, Hargittai P, Simon J (1985) J Biochem Biophys Methods 10:295

    Article  Google Scholar 

  31. Zimányi L, Saltiel J, Brown LS, Lanyi JK (2006) J Phys Chem A 110:2318

    Article  Google Scholar 

  32. Tóth-Boconádi R, Dér A, Keszthelyi L (2000) Biophys J 78:3170

    Article  Google Scholar 

  33. Tóth-Boconádi R, Dér A, Taneva SG, Tuparev N, Keszthelyi L (2001) Eur Biophys J 30:140

    Article  Google Scholar 

  34. Porschke D (2002) J. Phys. Chem. B. 106:10233

    Article  CAS  Google Scholar 

  35. Zimányi L, Kulcsár A, Lanyi JK, Sears DP, Saltiel J (1999) Proc Natl Acad Sci USA 96:4414

    Article  Google Scholar 

  36. Tóth-Boconádi R, Taneva SG, Keszthelyi L (2001) J Photochem Photobiol B 65:122

    Article  Google Scholar 

  37. Tóth-Boconádi R, Taneva SG, Keszthelyi L (2005) Biophys J 89:2605

    Article  Google Scholar 

  38. Zimányi L, Váró G, Chang M, Ni BF, Needleman R, Lanyi JK (1992) Biochemistry 31:8535

    Article  Google Scholar 

  39. Sasaki J, Shichida Y, Lanyi JK, Maeda A (1992) J Biol Chem 267:20782

    CAS  Google Scholar 

  40. Haupts U, Tittor J, Bamberg E, Oesterhelt D (1997) Biochemistry 36:2

    Article  CAS  Google Scholar 

  41. Lanyi JK (1998) Biochim Biophys Acta 1365:17

    Article  CAS  Google Scholar 

  42. Dogonadze RR, Kuznetzov AM, Ulstrup J (1977) J Theor Biol 69:239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Discussions with Prof. Sándor Suhai on the general aspects of the bacteriorhodopsin proton pump mechanism are gratefully acknowledged. The research was supported by the Hungarian National Science Fund (OTKA T-049489 and CK 78367). S.G.T. is a visiting professor at the University of the Basque Country and an associate member of the Institute of Biophysics Bulgarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Dér.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth-Boconádi, R., Dér, A., Taneva, S.G. et al. Excitation of the M intermediates of wild-type bacteriorhodopsin and mutant D96N: temperature dependence of absorbance, electric responses and proton movements. Theor Chem Acc 125, 365–373 (2010). https://doi.org/10.1007/s00214-009-0632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0632-y

Keywords

Navigation