Skip to main content
Log in

An overview of the electronic structure in trigonal bipyramidal clusters of main elements or mixed with transition metals

  • Overview
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Equatorial/apical bond repartitioning in TBP clusters, formed by main group elements only (e.g., B5H5 2−, B3H3N2, etc.) or mixed with metal atoms (e.g., [(L2M)3S2]n, [(L3M)3S2]n, [(CpM)3S2]n), is critically analyzed from the horizontal comparison of the experimental structures and in terms of basic MO concepts. The ideas are double-checked through specific DFT calculations or existing ab initio results. Based on the Wade’s rules for closo-clusters, the five vertices systems are normally characterized by six skeletal electron pairs. In the main group clusters, the electron delocalization at the equatorial edges depends on the electronegativity of the apical groups and for the Beq–Beq bonds an inverse relationship between bond strength and bond length is remarked. In [(L2M)3S2]n compounds with a total electron count (TEC) of 48, the six bonding electron pairs localize at the apical M–S bonds. In [(L3M)3S2]n or [(CpM)3S2]n, also with TEC = 48, the effective atomic number rule predicts three single M–M single bonds besides the six M–S apical ones. In actuality, only partial M–M bonding can be considered due to the intermediation of the capping sulphur atoms, that help shifting the antibonding character of populated radial levels with that of the vacant tangential ones (bonding). The qualitative MO arguments are supported by the topological nature of the calculated DFT wave functions. Moreover, the MO nature of three lowest LUMOs for 48e species help to rationalize experimental structural trends observed for the addition of up to five electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Scheme 6
Fig. 4

Similar content being viewed by others

Notes

  1. Cambridge Structural Database System, Cambridge Crystallographic data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.

  2. The EAN rule predicts that the number of M–M bonds (n) is equal to the half difference between the highest electron configuration achievable by all the metals (in this case 3 × 18) and the actual number of valence electrons (=TEC). For 48e TBP compounds, n = 3.

  3. To justify some experimental data it has been assumed that a2′ may even be lower than 2e′ [55].

References

  1. Bencini A (2008) Inorg Chim Acta 361:3820. doi:10.1016/j.ica.2008.03.076

    Article  CAS  Google Scholar 

  2. Hoffmann R (1998) Theochem 424:1. doi:10.1016/S0166-1280(97)00219-4

    Article  CAS  Google Scholar 

  3. Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405–408. doi:10.1002/anie.200602907

    Article  CAS  Google Scholar 

  4. Barone V, Improta R, Rega N (2008) Acc Chem Res 41:605. doi:10.1021/ar7002144

    Article  CAS  Google Scholar 

  5. Colle R, Fortunelli A, Re N, Salvetti O (1988) J Am Chem Soc 110:8016. doi:10.1021/ja00232a010

    Article  CAS  Google Scholar 

  6. ADF2008 01; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam. Available at http://www.scm.com

  7. Te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Comput Chem 22:931

    Article  CAS  Google Scholar 

  8. Fonseca Guerra C, Snijders JG, Te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391

    Article  Google Scholar 

  9. Mealli C, Proserpio DM (1990) J Chem Ed 67:399

    Article  CAS  Google Scholar 

  10. Mealli C, Ienco A, Proserpio DM (1998) Book of Abstracts of the XXXIII ICCC, ICCC, Florence, Italy, p 510

  11. Li H, Carpenter GB, Sweigart DA (2000) Organometallics 19:1823. doi:10.1021/om000100d

    Article  CAS  Google Scholar 

  12. Ienco A, Caporali M, Zanobini F, Mealli C (2009) Inorg Chem 48 (in press). doi:10.1021/ic8023748

  13. Wade K (1971) J Chem Soc Chem Commun 792

  14. Wade K (1976) Adv Inorg Radiochem 18:1

    CAS  Google Scholar 

  15. O’Neill ME, Wade K (1982) Comprehensive organometallic chemistry. In: Wilkinson G, Stone FGA, Abel E (eds) Pergamon Press, New York

  16. Brown EC, York TJ, Antholine WE, Ruiz E, Alvarez S, Tolman WB (2005) J Am Chem Soc 127:13752. doi:10.1021/ja053971t

    Article  CAS  Google Scholar 

  17. York JT, Bar-Nahum I, Tolman WB (2007) Inorg Chem 46:8105. doi:10.1021/ic700760p

    Article  CAS  Google Scholar 

  18. Mealli C, Ienco A, Poduska A, Hoffmann R (2008) Angew Chem Int Ed 47:2864. doi:10.1002/anie.200705296

    Article  CAS  Google Scholar 

  19. Isobe K, Ozawa Y, Vázquez de Miguel A, Zhu TW, Zhao KM, Nishioka T, Ogura T, Kitagawa T (1994) Angew Chem Int Ed Engl 33:1882. doi:10.1002/anie.199418821

    Article  Google Scholar 

  20. Nishioka T, Kitayama H, Breedlove BK, Shiomi K, Kinoshita I, Isobe K (2004) Inorg Chem 43:5688. doi:10.1021/ic049855t

    Article  CAS  Google Scholar 

  21. Poduska A, Hoffmann R, Ienco A, Mealli C (2009) Chem Asian J 4:302. doi:10.1002/asia.200800333

    Article  CAS  Google Scholar 

  22. Mealli C, Hoffmann R, Alvarez S (2009) Submitted for publication

  23. von R, Schleyer P, Subramanian G, Dransfeld A (1996) J Am Chem Soc 118:9988. doi:10.1021/ja962036q

    Article  Google Scholar 

  24. Burdett JK, Eisenstein O (1995) J Am Chem Soc 117:939

    Google Scholar 

  25. Dixon DA, Klier DA, Halgreen TA, Hall JH, Lipscomb WN (1977) J Am Chem Soc 99:7834. doi:10.1021/ja00466a014

    Article  Google Scholar 

  26. Graham GD, Marynick DS, Lipscomb WN (1980) J Am Chem Soc 102:2939. doi:10.1021/ja00529a012

    Article  CAS  Google Scholar 

  27. King RB, Rouvray DH (1977) J Am Chem Soc 99:7834. doi:10.1021/ja00466a014

    Article  CAS  Google Scholar 

  28. Aihara J (1978) J Am Chem Soc 100:3339. doi:10.1021/ja00479a015

    Article  CAS  Google Scholar 

  29. Jemmis ED, Subramanian GJ (1994) J Phys Chem 98:9222. doi:10.1021/j100088a022

    Article  CAS  Google Scholar 

  30. Jemmis ED, Jayasree EG (2003) Acc Chem Res 36:816. doi:10.1021/ar0300266

    Article  CAS  Google Scholar 

  31. von R Schleyer P, Najafian K (1998) Inorg Chem 37:3454. doi:10.1021/ic980110v

  32. Sahin Y, Präsang C, Hofmann M, Geiuseler G, Massa W, Berndt A (2005) Angew Chem Int Ed 44:1643. doi:10.1002/anie.200462397

    Article  CAS  Google Scholar 

  33. Antipin M, Boese R, Bläser D, Maulitz A (1997) J Am Chem Soc 119:326. doi:10.1021/ja961884i

    Article  CAS  Google Scholar 

  34. Mealli C, Costanzo F, Ienco A, Peruzzini M, Perez-Carreño E (1998) Inorg Chim Acta 275:366. doi:10.1016/S0020-1693(97)06066-0

    Article  Google Scholar 

  35. Hoffmann R (1982) Angew Chem Int Ed Engl 21:711. doi:10.1002/anie.198207113

    Article  Google Scholar 

  36. Phillips AD, Ienco A, Reinhold J, Böttcher H-C, Mealli C (2006) Chem Eur J 12:4691. doi:10.1002/chem.200501071

  37. Cecconi F, Ghilardi CA, Midollini S, Orlandini A (1991) Z Naturforsch B 46:1161

    CAS  Google Scholar 

  38. Cecconi F, Ghilardi CA, Midollini S, Orlandini A, Vacca A, Ramírez JA (1990) J Chem Soc Dalton Trans 773

  39. Fenske D, Fleischer H, Krautscheid H (1990) Z Naturforsch B 45:127

    CAS  Google Scholar 

  40. Ghilardi CA, Midollini S, Orlandini A, Scapacci G (1992) J Chem Soc Dalton Trans 2909

  41. Haiduc I, Semeniuc RF, Campian M, Kravtsov VC, Simonov YA (2003) Polyhedron 22:2895

    Article  CAS  Google Scholar 

  42. Matsumoto K, Saiga N, Tanaka S, Ooi S (1991) J Chem Soc Dalton Trans 1265

  43. Vicic DA, Jones WD (1999) J Am Chem Soc 121:7606

    Article  CAS  Google Scholar 

  44. Galli D, Garlaschelli L, Ciani G, Fumagalli A, Martinengo S, Sironi A (1984) J Chem Soc 55

  45. Della Pergola R, Garlaschelli L, Martinengro S, Demartin F, Manassero M, Sansoni M (1986) J Chem Soc Dalton Trans 2463. doi:10.1039/dt9860002463

  46. Casado M, Perez-Torrente JJ, Ciriano MA, Edwards AJ, Lahoz FJ, Oro LA (1999) Organometallics 18:5299. doi:10.1021/om990623p

    Article  CAS  Google Scholar 

  47. Fang Z-G, Hor TSA, Mok KF, Ng S-C, Liu L-K, Wen Y-S (1993) Organometallics 12:1009. doi:10.1021/om00028a010

    Article  CAS  Google Scholar 

  48. Yao W-R, Guo D-S, Liu ZH, Zhang Q-F (2003) J Mol Struct 657:165. doi:10.1016/S0022-2860(03)00415-0

    Article  CAS  Google Scholar 

  49. Huang K-C, Tsai Y-C, Lee G-H, Peng S-M, Shieh M (1997) Inorg Chem 36:4421. doi:10.1021/ic961482b

    Article  CAS  Google Scholar 

  50. Seidel R, Schnautz B, Henkel G (1996) Angew Chem Int Ed Engl 35:1710. doi:10.1002/anie.199617101

    Article  CAS  Google Scholar 

  51. Zhuang B, Chen J, He L, Chen J, Zhou Z, Wu K (2004) J Organomet Chem 689:2674. doi:10.1016/j.jorganchem.2004.05.036

    Article  CAS  Google Scholar 

  52. Pulliam CR, Thoden JB, Stacy AM, Spencer B, Englert MH, Dahl LF (1991) J Am Chem Soc 113:7398. doi:10.1021/ja00019a041

    Article  CAS  Google Scholar 

  53. Nishioka T, Isobe K (1994) Chem Lett 1661. doi:10.1246/cl.1994.1661

  54. Zimmermann C, Anson CE, Eckermann AL, Wunder M, Fischer G, Keilhauer I, Herrling E, Pilawa B, Hampe O, Weigend F, Dehnen S (2004) Inorg Chem 43:4595. doi:10.1021/ic034876t

    Article  CAS  Google Scholar 

  55. North TE, Thoden JB, Spencer B, Dahl LF (1993) Organometallics 12:1299. doi:10.1021/om00028a053

    Article  CAS  Google Scholar 

  56. Carrasco R, Aullòn G, Alvarez S (2009) Chem Eur J 15:536. doi:10.1002/chem.200800914

    Article  CAS  Google Scholar 

  57. Wiberg KB, Walker FH (1982) J Am Chem Soc 104:5239. doi:10.1021/ja00383a046

    Article  CAS  Google Scholar 

  58. Nied D, Klopper WF, Breher A (2009) Angew Chem Int Ed 47:2864

    Google Scholar 

  59. Mealli C, Ienco A (to be published)

  60. Rives AB, You X-Z, Fenske RF (1982) Inorg Chem 21:2286. doi:10.1021/ic00136a032

    Article  CAS  Google Scholar 

  61. Maj JJ, Rae AD, Dahl LF (1982) J Am Chem Soc 104:3054. doi:10.1021/ja00375a019

    Article  CAS  Google Scholar 

  62. Dehnen S (2005) Z Anorg Allg Chem 631:604. doi:10.1002/zaac.200400512

    Article  CAS  Google Scholar 

  63. Zimmermann C, Anson CE, Dehnen S (2007) J Cluster Sci 18:618. doi:10.1007/s10876-007-0130-0

    Article  CAS  Google Scholar 

  64. Frisch MJ et al (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CT

  65. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  66. Lee C, Yang W, Parr R (1998) Phys Rev B 37:785. doi:10.1103/PhysRevB.37.785

    Article  Google Scholar 

  67. Dolg M, Stoll H, Preuss H, Pitzer RM (1993) J Phys Chem 97:5852. doi:10.1021/j100124a012

    Article  CAS  Google Scholar 

  68. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213. doi:10.1007/BF00533485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are expressed to Professor Roald Hoffmann for comments and suggestions. The work was carried out under the Project No. 7 of the DPM at CNR. Computations have performed thanks to the time allotted by CINECA and CASPUR under the agreement with CNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mealli.

Additional information

Dedicated to the memory of Professor Oriano Salvetti and published as part of the Salvetti Memorial Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information (DOC 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mealli, C., Messaoudi, A. & Ienco, A. An overview of the electronic structure in trigonal bipyramidal clusters of main elements or mixed with transition metals. Theor Chem Acc 123, 365–373 (2009). https://doi.org/10.1007/s00214-009-0563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0563-7

Keywords

Navigation