Skip to main content

Advertisement

Log in

Density functional calculations of potential energy surface and charge transfer integrals in molecular triphenylene derivative HAT6

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We investigate the effect of structural fluctuations on charge transfer integrals, overlap integrals, and site energies in a system of two stacked molecular 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6), which is a model system for conducting devices in organic photocell applications. A density functional based computational study is reported. Accurate potential energy surface calculations are carried out using an improved meta-hybrid density functional to determine the most stable configuration of the two weakly bound HAT6 molecules. The equilibrium parameters in terms of the twist angle and co-facial separation are calculated. Adopting the fragment approach within the Kohn–Sham density functional framework, these parameters are combined to a lateral slide, to mimic structural/conformational fluctuations and variations in the columnar phase. The charge transfer and spatial overlap integrals, and site energies, which form the matrix element of the Kohn–Sham Hamiltonian are derived. It is found that these quantities are strongly affected by the conformational variations. The spatial overlap between stacked molecules is found to be of considerable importance since charge transfer integrals obtained using the fragment approach differ significantly from those using the dimer approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schmidt-Mende L, Fechtenkotter A, Multen K, Moons E, Frien RH, MacKenzie JD (2001) Science 293:1119

    Article  CAS  Google Scholar 

  2. Forrest SR (2005) Nature (Lond) 87:233508

    Google Scholar 

  3. Xue J, Uchida S, Rand BP, Forrest SR (2004) App Phys Lett 85:5757

    Article  CAS  Google Scholar 

  4. Yu, G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789

    Article  CAS  Google Scholar 

  5. Peumans P, Uchida S, Forrest SR (2003) Nature 425:158

    Article  CAS  Google Scholar 

  6. Xue J, Uchida S, Rand BP, Forrest SR (2004) App Phys Lett 84:3013

    Article  CAS  Google Scholar 

  7. Chandrasekhar S, Raganath GS (1990) Rep Prog Phys 53:57

    Article  CAS  Google Scholar 

  8. Boden N, Bissel R, Clements J, Movaghar B (1996) Curr Sci 71:599

    Google Scholar 

  9. Shen X, Dong RY, Boden N, Bushby RJ, Martin PS, Wood A (1998) J Chem Phys 108:4324

    Article  CAS  Google Scholar 

  10. Adam D, Schumacher B, Simmeree J, Etzbach KH, Ringsdorf H, Haarer D (1994) Nature (Lond) 371:142

    Google Scholar 

  11. Xue J, Uchida S, Rand B, Forrest S (2004) Appl Phys Lett 85:5757

    Article  CAS  Google Scholar 

  12. Yang F, Lunt R, Forrest S (2008) Appl Phys Lett 92:053310

    Article  Google Scholar 

  13. Dreschel J, Mannig B, Kozlowski F, Pfeiffer M, Leo K, Hope H (2005) App Phys Lett 86:244102

    Article  Google Scholar 

  14. Cheyns D, Gommans H, Odijk M, Poortmans J, Heremans P (2007) Sol Ener Mat 91:399

    Article  CAS  Google Scholar 

  15. Rand BP, Xue J, Yang F, Forrest SR (2005) App Phys Lett 87:233508

    Article  Google Scholar 

  16. Soci C, Moses D, Xu QH, Heeger AJ (2005) Phys Rev B 72:245204

    Article  Google Scholar 

  17. Mulder FM, Stride J, Picken SJ, Kouwer PHJ, de Haas MP, Siebbeles LDA, Kearley GJ (2003) J Am Chem Soc 125:3860

    Article  CAS  Google Scholar 

  18. Kruglova O, Mulder FM, Siebbeles LDA, Kearley GJ (2006) Chem Phys 330:333

    Article  CAS  Google Scholar 

  19. Kruglova O, Mulder FM, Kotlewski A, Picken SJ, Parker S, Johnson MR, Kearley GJ (2006) Chem Phys 330:360

    Article  CAS  Google Scholar 

  20. Kearley GJ, Mulder FM, Picken SJ, Kouwer PHJ, Stride J (2003) Chem Phys 292:185

    Article  CAS  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  22. Kohn W, Sham L (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision d.01. Gaussian, Inc., Wallingford

    Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  25. Rey J, Savin A (1998) Int J Quantum Chem 69:581

    Article  CAS  Google Scholar 

  26. Krieger JB, Chen J, Iafrate GJ, Savin A (1996) In: Gonis A, Kioussis N (eds) Electron correlations and materials properties. Plenum, New York, p 463

    Google Scholar 

  27. Toulouse J, Savin A, Adamo C (2002) J Chem Phys 117:10465

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415

    Article  CAS  Google Scholar 

  29. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976

    Article  CAS  Google Scholar 

  30. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081

    Article  CAS  Google Scholar 

  31. Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062

    Article  Google Scholar 

  32. ADF, Amsterdam density functional program (2006) Theoretical chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  33. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Article  CAS  Google Scholar 

  34. Becke A (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  35. Perdew J (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  36. Perdew J (1986) Phys Rev B 34:7406

    Article  Google Scholar 

  37. Perdew J, Chevarya J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  38. Lenthe EV, Baerends EJ (2003) J Comput Chem 24:1142

    Article  Google Scholar 

  39. Huang J, Kertesz M (2005) J Chem Phys 122:234707

    Article  Google Scholar 

  40. Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA (2003) J Chem Phys 119:9809

    Article  CAS  Google Scholar 

  41. Santhanamoorthi N, Kolandaivel P, Senthilkumar K (2006) J Phys Chem A 110:11551

    Article  CAS  Google Scholar 

  42. Wang H-J, Fu Y (2009) J Mol Struct (Theochem) 893:67

    Article  CAS  Google Scholar 

  43. Riley KE, Op’t Holt BT, Merz KM (2007) J Chem Theory Comput 3:407

    Article  CAS  Google Scholar 

  44. Bartlett RJ, Lotrich VF, Schweigert IV (2005) J Chem Phys 123:062205

    Article  Google Scholar 

  45. Zbiri M, Johnson MR, Kearley GJ, Mulder FM (2009) (in press)

  46. Wegewijs BR, Siebbeles LDA, Boden N, Bushby RJ, Movaghar B, Lozman OR, Liu Q, Pecchia A, Mason LA (2002) Phys Rev B 65:245112

    Article  Google Scholar 

  47. Palenberg MA, Silbey RJ, Malagoli M, Bredas JL (2000) J Chem Phys 112:1541

    Article  CAS  Google Scholar 

  48. Vosko SH, Wilk L, Nusair M (1980) Can J Chem 58:1200

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon J. Kearley.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbiri, M., Johnson, M.R., Kearley, G.J. et al. Density functional calculations of potential energy surface and charge transfer integrals in molecular triphenylene derivative HAT6 . Theor Chem Acc 125, 445–451 (2010). https://doi.org/10.1007/s00214-009-0559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0559-3

Keywords

Navigation