Skip to main content

First-Principles Investigations of Electronically Excited States in Organic Semiconductors

  • Chapter
  • First Online:
Organic Solar Cells

Abstract

In this chapter, we review our theoretical investigations of the electronically excited states in organic semiconductor materials. Detailed insights into the electronically excited states are essential for understanding the charge photogeneration process in organic solar cells. However, despite recent developments of quantum chemistry and ab initio software packages, it is still challenging to predict the electronic states of disordered organic materials, such as donor/acceptor interfaces. Here, we present first-principle studies of the organic semiconductors based on large-scale electronic structure calculations, highlighting the effects of intermolecular interactions and molecular aggregations on the excited states. We first outline the effects of molecular aggregations on the electronic states, polarization and delocalization effects. Next, we summarize the recent developments in large-scale electronic structure calculations based on the many-body Green’s function and fragment molecular orbital method. In particular, the advantages of the many-body Green’s function method within the GW approximation are discussed in terms of the exciton binding energy. As an application, we investigate the electronic states of pentacene clusters and illustrate the roles of polarization and delocalization effects. Moreover, we explore the interfacial charge-transfer states in a pentacene/C60 interface structure and discuss the role of induced polarization in the electron-hole pair separation. Finally, we briefly address future challenges for first-principle studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: The pbe0 model. J. Chem. Phys. 110(13), 6158–6170 (1999)

    CAS  Google Scholar 

  2. Akaike K.: Advanced understanding on electronic structure of molecular semiconductors and their interfaces. Jpn. J. Appl. Phys. 57(3S2):03EA03 (2018)

    Google Scholar 

  3. Aryasetiawan, F., Gunnarsson, O.: The gw method. Rep. Prog. Phys. 61(3), 237 (1998)

    CAS  Google Scholar 

  4. Atahan-Evrenk, S., Aspuru-Guzik, A.: Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications. In: Atahan-Evrenk, S., Aspuru-Guzik, A. (eds) Prediction and Calculation of Crystal Structures, Topics in Current Chemistry, vol 345, Springer International Publishing (2014), pp 95–138

    Google Scholar 

  5. Bakulin, A., Rao, A., Pavelyev, V.G., van Loosdrecht, P.H.M., Pshenichnikov, M.S., Niedzialek, D., Cornil, J., Beljonne, D., Friend, R.H.: The role of driving energy and delocalized States for charge separation in organic semiconductors. Science 335(6074), 1340 (2012)

    CAS  PubMed  Google Scholar 

  6. Bardeen, C.J.: The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65(1), 127–148 (2014)

    CAS  PubMed  Google Scholar 

  7. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)

    CAS  Google Scholar 

  8. Becke, A.D.: Density-functional thermochemistry. iv. a new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104(3), 1040–1046 (1996)

    Google Scholar 

  9. Benduhn, J., Tvingstedt, K., Piersimoni, F., Ullbrich, S., Fan, Y., Tropiano, M., McGarry, K.A., Zeika, O., Riede, M.K., Douglas, C.J., Barlow, S., Marder, S.R., NeherD, Spoltore D., Vandewal, K.: Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2(April), 17053 (2017)

    CAS  Google Scholar 

  10. Blase, X., Attaccalite, C., Olevano, V.: First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B 83, 115103 (2011)

    Google Scholar 

  11. Blase, X., Duchemin, I., Jacquemin, D.: The bethe–salpeterequation in chemistry: relations with td-dft, applications and challenges. Chem. Soc. Rev. 47(3), 1022–1043 (2018)

    CAS  PubMed  Google Scholar 

  12. Brédas, J.L., Norton, J.E., Cornil, J., Coropceanu, V.: Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res. 42(11), 1691–1699 (2009)

    PubMed  Google Scholar 

  13. Brigeman, A.N., Fusella, M.A., Yan, Y., Purdum, G.E., Loo, Y.L., Rand, B.P., Giebink, N.C.: Revealing the full charge transfer state absorption spectrum oforganic solar cells. Adv. Energy Mater. 6(21), 1601001 (2016)

    Google Scholar 

  14. Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008)

    CAS  PubMed  Google Scholar 

  15. Chiba, M., Fedorov, D.G., Kitaura, K.: Time-dependent density functional theory with the multilayer fragment molecular orbital method. Chem. Phys. Lett. 444(4–6), 346–350 (2007)

    CAS  Google Scholar 

  16. Clarke, T.M., Durrant, J.R.: Charge photogeneration in organic solar cells. Chem. Rev. 110(11), 6736–6767 (2010)

    CAS  PubMed  Google Scholar 

  17. Coropceanu, V., Malagoli, M., da Silva Filho, D.A., Gruhn, N.E., Bill, T.G., Brédas, J.L.: Hole- and electron-vibrational couplings in oligoacene crystals: Intramolecular contributions. Phys. Rev. Lett. 89, 275503 (2002)

    CAS  PubMed  Google Scholar 

  18. Coto, P.B., Sharifzadeh, S., Neaton, J.B., Thoss, M.: Low-lying electronic excited states of pentacene oligomers: A comparative electronic structure study in the context of singlet fission. J. Chem. Theory Comput. 11(1), 147–156 (2014)

    Google Scholar 

  19. Crocker, L., Wang, T., Kebarle, P.: Electron affinities of some polycyclic aromatic hydrocarbons, obtained from electron-transfer equilibria. J. Am. Chem. Soc. 115(17), 7818–7822 (1993)

    CAS  Google Scholar 

  20. Cudazzo, P., Gatti, M., Rubio, A.: Excitons in molecular crystals from first-principles many-body perturbation theory: Picene versus pentacene. Phys. Rev. B 86, 195307 (2012). https://doi.org/10.1103/physrevb.86.195307, https://link.aps.org/doi/10.1103/PhysRevB.86.195307

  21. Cudazzo, P., Sottile, F., Rubio, A., Gatti, M.: Exciton dispersion in molecular solids. J. Phys.: Condens. Matter 27(11), 113204 (2015)

    Google Scholar 

  22. Dahlbom, M., Pullerits, T., Mukamel, S., Sundström, V.: Exciton delocalization in the b850 light-harvesting complex: Comparison of different measures. J. Phys. Chem. B 105, 5515–5524 (2001)

    CAS  Google Scholar 

  23. Davidov, A.S.: Theory of Molecular Excitons. Springer, New York (1971)

    Google Scholar 

  24. D’Avino, G., Mothy, S., Muccioli, L., Zannoni, C., Wang, L., Cornil, J., Beljonne, D., Castet, F.: Energetics of electron–hole separation at p3ht/pcbm heterojunctions. J. Phys. Chem. C 117(25), 12981–12990 (2013)

    Google Scholar 

  25. D’Avino, G., Muccioli, L., Castet, F., PoelkingC, Andrienko D., Soos, Z.G., CornilJ, Beljonne D.: Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics. J. Phys.: Condens. Matter 28(43), 433002 (2016)

    Google Scholar 

  26. D’Avino, G., Muccioli, L., Olivier, Y., Beljonne, D.: Charge separation and recombination at polymer-fullerene heterojunctions: Delocalization and hybridization effects. J. Phys. Chem. Lett. 7(3), 536–540 (2016)

    PubMed  Google Scholar 

  27. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    CAS  Google Scholar 

  28. Dreuw, A., Head-Gordon, M.: Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105(11), 4009–4037 (2005)

    CAS  PubMed  Google Scholar 

  29. Dreuw, A., Weisman, J.L., Head-Gordon, M.: Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J.Chem. Phys. 119(6), 2943–2946 (2003)

    CAS  Google Scholar 

  30. Fedorov, D.G., Kitaura, K. (eds.): The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems. CRC Press, Boca Raton, FL (2009)

    Google Scholar 

  31. Fedorov, D.G., Kitaura, K.: Many-body expansion of the fock matrix in the fragment molecular orbital method. J. Chem. Phys. 147(10), 104106 (2017)

    PubMed  Google Scholar 

  32. Few, S., Frost, J.M., Nelson, J.: Models of charge pair generation in organic solar cells. Phys. Chem. Chem. Phys. 17, 2311–2325 (2015)

    CAS  PubMed  Google Scholar 

  33. Fratini, S., Mayou, D., Ciuchi, S.: The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26(14), 2292–2315 (2016)

    CAS  Google Scholar 

  34. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A.,Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: Gaussian 16 Revision B.01. Gaussian Inc. Wallingford CT (2016)

    Google Scholar 

  35. Fu, Y.T., Risko, C., Brédas, J.L.: Intermixing at the pentacene-fullerene bilayer interface: A molecular dynamics study. Adv. Mater. 25(6), 878–882 (2013)

    CAS  PubMed  Google Scholar 

  36. Fujimoto, K.J.: Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states. J. Chem. Phys. 137(3), 034101 (2012)

    PubMed  Google Scholar 

  37. Fujita, T., Hoshi, T.: Fmo-based investigations of excited-state dynamics in molecular aggregates. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method - Enhanced Performance and Applicability, Springer (2020), in press

    Google Scholar 

  38. Fujita, T., Mochizuki, Y.: Development of the fragment molecular orbital method for calculating nonlocal excitations in large molecular systems. J. Phys. Chem. A 122(15), 3886–3898 (2018)

    CAS  PubMed  Google Scholar 

  39. Fujita, T., Noguchi, Y.: Development of the fragment-based cohsexmethod for large and complex molecular systems. Phys. Rev. B 98, 205140 (2018). https://doi.org/10.1103/physrevb.98.205140

    Article  CAS  Google Scholar 

  40. Fujita, T., Brookes, J.C., Saikin, S.K., Aspuru-Guzik, A.: Memory-assistedexciton diffusion in the chlorosome light-harvesting antenna of green sulfurbacteria. J. Phys. Chem. Lett. 3, 2357–2361 (2012)

    CAS  PubMed  Google Scholar 

  41. Fujita, T., Huh, J., Saikin, S.K., Brookes, J.C., Aspuru-Guzik, A.: Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Photosynth. Res. 120(3), 273–289 (2014)

    CAS  PubMed  Google Scholar 

  42. Fujita, T., Atahan-Evrenk, S., Sawaya, N.P.D., Aspuru-Guzik, A.: Coherent dynamics of mixed frenkel and charge-transfer excitons in dinaphtho[2,3-b:2′ 3′ -f ]thieno[3,2-b]-thiophene thin films: The importance of hole delocalization. J. Phys. Chem. Lett. 7(7), 1374–1380 (2016)

    CAS  PubMed  Google Scholar 

  43. Fujita, T., Haketa, Y., Maeda, H., Yamamoto, T.: Relating stacking structures and charge transport in crystal polymorphs of the pyrrole-based π-conjugated molecule. Org. Electron. 49, 53–63 (2017)

    CAS  Google Scholar 

  44. Fujita, T., Alam, M.K., Hoshi, T.: Thousand-atom ab initio calculations of excited states at organic/organic interfaces: Toward first-principles investigations of charge photogeneration. Phys. Chem. Chem. Phys. 20, 26443–26452 (2018). https://doi.org/10.1039/c8cp05574b

    Article  CAS  PubMed  Google Scholar 

  45. Fujita, T., Noguchi, Y., Hoshi, T.: Charge-transfer excited states in the donor/acceptor interface from large-scale gw calculations. J. Chem. Phys. 151(11), 114109 (2019)

    PubMed  Google Scholar 

  46. Gao, F., Inganas, O.: Charge generation in polymer-fullerene bulkheterojunctionsolar cells. Phys. Chem. Chem. Phys. 16, 20291–20304 (2014)

    CAS  PubMed  Google Scholar 

  47. Gao, W., Xia, W., Gao, X., Zhang, P.: Speeding up gw calculations to meet the challenge of large scale quasiparticle predictions. Sci. Rep. 6, 36849 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gélinas, S., Rao, A., Kumar, A., Smith, S.L., Chin, A.W., Clark, J., van der Poll, T.S., Bazan, G.C., Friend, R.H.: Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170), 512–516 (2014)

    PubMed  Google Scholar 

  49. Giustino, F.: Electron-phonon interactions from first principles. Rev. Mod. Phys. 89(1), 015003 (2017)

    Google Scholar 

  50. Gordon, M.S., Fedorov, D.G., Pruitt, S.R., Slipchenko, L.V.: Fragmentation methods: A route to accurate calculations on large systems. Chem. Rev. 112(1), 632–672 (2012)

    CAS  PubMed  Google Scholar 

  51. Govoni, M., Galli, G.: Large scalegw calculations. J. Chem. Theory Comput. 11(6), 2680–2696 (2015)

    CAS  PubMed  Google Scholar 

  52. Halasinski, T.M., Hudgins, D.M., Salama, F., Allamandola, L.J., Bally, T.: Electronic absorption spectra of neutral pentacene (c22h14) and its positive and negative ions in ne, ar, and kr matrices. J. Phys. Chem. A 104(32), 7484–7491 (2000)

    CAS  Google Scholar 

  53. Hedin, L.: New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796 (1965)

    Google Scholar 

  54. Hestand, N.J., Spano, F.C.: Expanded theory of h- and j-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118(15), 7069–7163 (2018)

    CAS  PubMed  Google Scholar 

  55. Hestand, N.J., Yamagata, H., Xu, B., Sun, D., Zhong, Y., Harutyunyan, A.R., ChenG, Dai H.L., Rao, Y., Spano, F.C.: Polarized absorption in crystallinepentacene: Theory versus experiment. J. Phys. Chem. C 119(38), 22137–22147 (2015)

    CAS  Google Scholar 

  56. Hirata, S., Head-Gordon, M.: Time-dependent density functional theory within the tamm-dancoff approximation. Chem. Phys. Lett. 314(3E), 291–299 (1999)

    CAS  Google Scholar 

  57. Hoshi, T., Imachi, H., Kuwata, A., Kakuda, K., Fujita, T., Matsui, H.: Numerical aspect of large-scale electronic state calculation for flexible device material. Japn. J. Indust. Appl. Math. 36(2), 685–698 (2019)

    Google Scholar 

  58. Hsu, C.P.: The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42(4), 509–518 (2009)

    CAS  PubMed  Google Scholar 

  59. Huh, J., Saikin, S.K., Brookes, J.C., Valleau, S., Fujita, T., Aspuru-Guzik, A.: Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J. Am. Chem. Soc. 136(5), 2048–2057 (2014)

    CAS  PubMed  Google Scholar 

  60. Iikura, H., Tsuneda, T., Yanai, T., Hirao, K.: A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115(8), 3540–3544 (2001)

    CAS  Google Scholar 

  61. Kitaura, K., Ikeo, E., Asada, T., Nakano, T., Uebayasi, M.: Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 313(3–4), 701–706 (1999)

    CAS  Google Scholar 

  62. Kitoh-Nishioka, H., Ando, K.: Fmo3-lcmo study of electron transfer coupling matrix element and pathway: Application to hole transfer between two tryptophans through cis- and trans-polyproline-linker systems. J. Chem. Phys. 145(11), 114103 (2016)

    Google Scholar 

  63. Koch, N., Vollmer, A., Salzmann, I., Nickel, B., Weiss, H., Rabe, J.P.: Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96, 156803 (2006)

    CAS  PubMed  Google Scholar 

  64. Körzdörfer, T., Brèdas, J.L.: Organic electronic materials: recent advances in the dft description of the ground and excited states using tuned rangeseparatedhybrid functionals. Acc. Chem. Res. 47(11), 3284–3291 (2014)

    PubMed  Google Scholar 

  65. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio totalenergycalculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    CAS  Google Scholar 

  66. Kurashige, Y., Yanai, T.: Theoretical study of the π → π∗ excited states of oligoacenes: A full π-valence dmrg-caspt2 study. Bull. Chem. Soc. Jpn. 87(10), 1071–1073 (2014)

    CAS  Google Scholar 

  67. Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetticorrelationenergyformula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    CAS  Google Scholar 

  68. Li, J., D’Avino, G., Duchemin, I., Beljonne, D., Blase, X.: Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory. Phys. Rev. B 97(3), 035108 (2018)

    CAS  Google Scholar 

  69. Lin, Y.L., Fusella, M.A., Rand, B.P.: The impact of local morphology onorganic donor/acceptor charge transfer states. Adv. Energy Mater. (2018)

    Google Scholar 

  70. Lin, Y.L., Zhang, F., Kerner, R.A., Yang, T.C.J., Kahn, A., Rand, B.P.: Variable charge transfer state energies at nanostructured pentacene/c60 interfaces. Appl. Phys. Lett. 112(21), 213302 (2018)

    Google Scholar 

  71. Liu, X., Rand, B.P., Forrest, S.R.: Engineering charge-transfer states for efficient, low-energy-loss organic photovoltaics. Trends Chem. (2019)

    Google Scholar 

  72. Ma, H., Troisi, A.: Direct optical generation of long-range charge-transfer states in organic photovoltaics. Adv. Mater. 26(35), 6163–6167 (2014)

    CAS  PubMed  Google Scholar 

  73. Martin, R.L.: Natural transition orbitals. J. Chem. Phys. 118(11), 4775–4777 (2003)

    CAS  Google Scholar 

  74. Matsui, H., Mishchenko, A.S., Hasegawa, T.: Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors. Phys. Rev. Lett. 104(5), 056602 (2010)

    PubMed  Google Scholar 

  75. Minami, T., Nakano, M., Castet, F.: Nonempirically tuned long-range corrected density functional theory study on local and charge-transfer excitation energies in a pentacene/c60 model complex. J. Phys. Chem. Lett. 2(14), 1725–1730 (2011)

    CAS  Google Scholar 

  76. Mochizuki, Y., Koikegami, S., Amari, S., Segawa, K., Kitaura, K., Nakano, T.: Configuration interaction singles method with multilayer fragment molecular orbital scheme. Chem. Phys. Lett. 406, 283–288 (2005)

    CAS  Google Scholar 

  77. Nakano, T., Kaminuma, T., Sato, T., Akiyama, Y., Uebayasi, M., Kitaura, K.: Fragment molecular orbital method: use of approximate electrostatic potential. Chem. Phys. Lett. 351, 475–480 (2002)

    CAS  Google Scholar 

  78. Nakayama, Y., Mizuno, Y., Hikasa, M., Yamamoto, M., Matsunami, M., Ideta, S., Tanaka, K., Ishii, H., Ueno, N.: Single-crystal pentacene valence-band dispersion and its temperature dependence. J. Phys. Chem. Lett. 8(6), 1259–1264 (2017)

    CAS  PubMed  Google Scholar 

  79. Neaton, J.B., Hybertsen, M.S., Louie, S.G.: Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006)

    CAS  PubMed  Google Scholar 

  80. Nishi, T., Kanno, M., Kuribayashi, M., Nishida, Y., Hattori, S., Kobayashi, H., von Wrochem, F., Rodin, V., Nelles, G., Tomiya, S.: Impact of molecular orientation on energy level alignment at c60/pentacene interfaces. Appl. Phys. Lett. 113(16), 163302 (2018)

    Google Scholar 

  81. Noguchi, Y., Sugino, O.: Molecular size insensitivity of optical gap of [n]cycloparaphenylenes (n = 3-16). J. Chem. Phys. 146(14), 144304 (2017)

    PubMed  Google Scholar 

  82. Noguchi, Y., Hirose, D., Sugino, O.: Optical properties of six isomers of three dimensionally delocalizedπ-conjugated carbon nanocage. Eur. Phys. J. B 91(6), 125 (2018)

    Google Scholar 

  83. Ohkita, H., Ito, S. Exciton and charge dynamics in polymer solar cells studied by transient absorption spectroscopy. In: Organic Solar Cells, Springer (2013), pp 103–137

    Google Scholar 

  84. Onida, G., Reining, L., Rubio, A.: Electronic excitations: Densityfunctionalversus many-body green’s-function approaches. Rev. Mod. Phys. 74(2), 601 (2002)

    CAS  Google Scholar 

  85. Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., Heeger, A.J.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3(5), 297–302 (2009)

    CAS  Google Scholar 

  86. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  PubMed  Google Scholar 

  87. Plasser, F.: Entanglement entropy of electronic excitations. J. Chem. Phys. 144(19), 194107 (2016)

    PubMed  Google Scholar 

  88. Poelking, C., Tietze, M., Elschner, C., Olthof, S., Hertel, D., Baumeier, B., WürthnerF, Meerholz K., Leo, K., Andrienko, D.: Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat. Mater. 14(4), 434 (2015)

    CAS  PubMed  Google Scholar 

  89. Pope, M., Swenberg, C.E.: Electronic processes in organic crystals and polymers. Oxford University Press on Demand (1999)

    Google Scholar 

  90. Refaely-Abramson, S., Jain, M., Sharifzadeh, S., Neaton, J.B., Kronik, L.: Solid-state optical absorption from optimally tuned time-dependent rangeseparatedhybrid density functional theory. Phys. Rev. B 92, 081204 (2015)

    Google Scholar 

  91. Reimers, J.R.: A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and duschinsky rotation matrices for large molecules. J. Chem. Phys. 115(20), 9103–9109 (2001)

    CAS  Google Scholar 

  92. Ren, X., Rinke, P., Blum, V., Wieferink, J., Tkatchenko, A., Sanfilippo, A., Reuter, K., Scheffler, M.: Resolution-of-identity approach to hartree–fock, hybrid density functionals, rpa, mp2 and gw with numeric atom-centered orbital basis functions. New J. Phys. 14(5), 053020 (2012)

    Google Scholar 

  93. Rohlfing, M., Louie, S.G.: Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000)

    CAS  Google Scholar 

  94. RühleV, Lukyanov A., May, F., Schrader, M., Vehoff, T., Kirkpatrick, J., BaumeierB, Andrienko D.: Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7(10), 3335–3345 (2011)

    Google Scholar 

  95. Salzmann, I., Duhm, S., Opitz, R., Johnson, R.L., Rabe, J.P., Koch, N.: Structural and electronic properties of pentacene-fullerene heterojunctions. J. Appl. Phys. 104(11), 114518 (2008)

    Google Scholar 

  96. Sawaya, N.P.D., Huh, J., Fujita, T., Saikin, S.K., Aspuru-Guzik, A.: Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model. Nano Lett. 15(3), 1722–1729 (2015)

    CAS  PubMed  Google Scholar 

  97. Schiefer, S., Huth, M., Dobrinevski, A., Nickel, B.: Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129(34), 10316–10317 (2007)

    CAS  PubMed  Google Scholar 

  98. Schwarze, M., Schellhammer, K.S., Ortstein, K., Benduhn, J., Gaul, C., HinderhoferA, Toro L.P., Scholz, R., Kublitski, J., Roland, S., et al.: Impact of molecular quadrupole moments on the energy levels at organic heterojunctions. NatCommun 10(1), 2466 (2019)

    Google Scholar 

  99. van Setten, M.J., Weigend, F., Evers, F.: The gw-method for quantum chemistry applications: Theory and implementation. J. Chem. Theory Comput. 9(1), 232–246 (2013)

    PubMed  Google Scholar 

  100. Sharifzadeh, S., Biller, A., Kronik, L., Neaton, J.B.: Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and ptcda from first principles. Phys. Rev. B 85(12), 125307 (2012)

    Google Scholar 

  101. Sharifzadeh, S., Darancet, P., Kronik, L., Neaton, J.B.: Low-energy chargetransferexcitons in organic solids from first-principles: The case of pentacene. J. Phys. Chem. Lett. 4(13), 2197–2201 (2013)

    CAS  Google Scholar 

  102. Spano, F.C.: The spectral signatures of frenkelpolarons in H- And J-aggregates. Acc. Chem. Res. 43(3), 429–439 (2010)

    CAS  PubMed  Google Scholar 

  103. Szabo, A., Ostlund, N.: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, New York (1996)

    Google Scholar 

  104. Takeshi, I.: Ab initio quantum chemical calculation of electron density, electrostatic potential, and electric field of biomolecule based on fragment molecular orbital method. Int. J. Quantum Chem. 118(8), e25535 (2018)

    Google Scholar 

  105. Takeya, J., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., Iwasa, Y.: Hall effect of quasi-hole gas in organic single-crystal transistors. Jpn. J. Appl. Phys. 44(46), L1393–L1396 (2005)

    CAS  Google Scholar 

  106. Tamura, H., Burghardt, I.: Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation. J. Am. Chem. Soc. 135(44), 16364–16367 (2013)

    CAS  PubMed  Google Scholar 

  107. Tanaka, S., Mochizuki, Y., Komeiji, Y., Okiyama, Y., Fukuzawa, K.: Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys. Chem. Chem. Phys. 16, 10310–10344 (2014)

    CAS  PubMed  Google Scholar 

  108. Tanaka, S., Miyata, K., Sugimoto, T., Watanabe, K., Uemura, T., Takeya, J., Matsumoto, Y.: Enhancement of the exciton coherence size in organic semiconductor by alkyl chain substitution. J. Phys. Chem. C 120(15), 7941–7948 (2016)

    CAS  Google Scholar 

  109. Tiago, M.L., Northrup, J.E., Louie, S.G.: Ab initio calculation of the electronic and optical properties of solid pentacene. Phys. Rev. B 67, 115212 (2003)

    Google Scholar 

  110. Troisi, A.: Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40, 2347–2358 (2011)

    CAS  PubMed  Google Scholar 

  111. Troisi, A., Orlandi, G.: Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006)

    PubMed  Google Scholar 

  112. Tsuneda, T., Song, J.W., Suzuki, S., Hirao, K.: On koopmans’ theorem in density functional theory. J. Chem. Phys. 133(17), 174101 (2010)

    PubMed  Google Scholar 

  113. Tsuneyuki, S., Kobori, T., Akagi, K., Sodeyama, K., Terakura, K., Fukuyama, H.: Molecular orbital calculation of biomolecules with fragment molecular orbitals. Chem. Phys. Lett. 476, 104–108 (2009)

    CAS  Google Scholar 

  114. Vandewal, K.: Interfacial charge transfer states in condensed phase systems. Annu. Rev. Phys. Chem. 67, 113–133 (2016)

    CAS  PubMed  Google Scholar 

  115. Verlaak, S., Beljonne, D., Cheyns, D., Rolin, C., Linares, M., Castet, F., CornilJ, Heremans P.: Electronic structure and geminate pair energetics at organic-organic interfaces: The case of pentacene/c60 heterojunctions. Adv. Funct. Mater. 19(23), 3809–3814 (2009)

    CAS  Google Scholar 

  116. Vydrov, O.A., Scuseria, G.E.: Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 125(23), 234109 (2006)

    PubMed  Google Scholar 

  117. Würthner, F., Kaiser, T.E., Saha-Möller, C.R.: J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50(15), 3376–3410 (2011)

    Google Scholar 

  118. Yamada, K., Yanagisawa, S., Koganezawa, T., Mase, K., Sato, N., Yoshida, H.: Impact of the molecular quadrupole moment on ionization energy and electron affinity of organic thin films: Experimental determination of electrostatic potential and electronic polarization energies. Phys. Rev. B 97, 245206 (2018)

    CAS  Google Scholar 

  119. Yamamoto, M., Nakayama, Y., Uragami, Y., Kinjo, H., Mizuno, Y., Mase, K., Koswattage, K.R., Ishii, H.: Electronic structures of a well-defined organic hetero-interface: C60 on pentacene single crystal. E-J. Surf. Sci. Nanotechnol. 13, 59–64 (2015)

    CAS  Google Scholar 

  120. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the coulomb-attenuating method (cam-b3lyp). Chem. Phys. Lett. 393(1–3), 51–57 (2004)

    CAS  Google Scholar 

  121. Yang, B., Yi, Y., Zhang, C.R., Aziz, S.G., Coropceanu, V., Brédas, J.L.: Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/c60 interfaces: A density functional theory study. J. Phys. Chem. C 118(48), 27648–27656 (2014)

    CAS  Google Scholar 

  122. Yao, J., Kirchartz, T., Vezie, M.S., Faist, M.A., Gong, W., He, Z., Wu, H., Troughton, J., Watson, T., Bryant, D., Nelson, J.: Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015)

    Google Scholar 

  123. Yoshida, H., Yamada, K., Tsutsumi, J., Sato, N.: Complete description of ionization energy and electron affinity in organic solids: Determining contributions from electronic polarization, energy band dispersion, and molecular orientation. Phys. Rev. B 92(7), 075145 (2015)

    Google Scholar 

  124. Zheng, Z., Brédas, J.L., Coropceanu, V.: Description of the charge transfer states at the pentacene/c60 interface: Combining range-separated hybrid functionals with the polarizable continuum model. J. Phys. Chem. Lett. 7(13), 2616–2621 (2016)

    CAS  PubMed  Google Scholar 

  125. Zheng, Z., Tummala, N.R., Fu, Y.T., Coropceanu, V., Brédas, J.L.: Chargetransferstates in organic solar cells: Understanding the impact of polarization, delocalization, and disorder. ACS Appl. Mater. Inter. 9(21), 18095–18102 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

T.F. thanks Prof. Yuji Mochizuki, Dr. Tatsuya Nakano, and Dr. Yoshio Okiyama for their collaborations on the FMO-based excited-state calculations and their implementation in the ABINIT-MP program. T.F. also thanks Prof. Yoshifumi Noguchi at Shizuoka University for collaboration on the developments of FMO-GW/BSE methods, Prof. Takeo Hoshi at Tottori University for collaboration on organic materials, and Prof. Seiichiro Izawa at Institute for Molecular Science for discussion on the organic solar cells. T.F. acknowledges the financial supports from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as a Building of Consortia for the Development of Human Resources in Science and Technology and from a Grant-in-Aid for Scientific Research (C) (19K05255) from the Japan Society for the Promotion of Science (JSPS). The majority of the FMO calculations in this work were performed using the facilities at the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo. The Gaussian calculations in this work were conducted at the Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takatoshi Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujita, T. (2021). First-Principles Investigations of Electronically Excited States in Organic Semiconductors. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_7

Download citation

Publish with us

Policies and ethics