Skip to main content
Log in

Ab Initio rovibrational spectrum of the NaH2 + ion–quadrupole complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic and rovibrational structure of (1A1) NaH2 + has been investigated using a relativistically-corrected, all-electron coupled-cluster with singles, doubles and perturbative triples (CCSD(T)) ansatz. For the electronic ground state this ansatz yielded equilibrium Na–H bond lengths (R e ) of 2.4208 Å and an equilibrium H–Na–H bond angle (θe) of 17.8°. An analytical potential energy surface (PES) was embedded in the rovibrational Hamiltonian. The PES was constructed using 118 CCSD(T) points and exhibited a residual error of 1.2 cm−1. The rovibrational Hamiltonian was diagonalised using variational techniques. The vibrational and rovibrational eigenvectors were assigned using a configuration weight scheme in terms of normal modes and the Mulliken assignment scheme, respectively. For the ground vibrational state of (1A1) NaH2 +, the vibration-averaged bond lengths 〈R〉 and angle 〈θ〉 were 2.4995 Å and 17.1°, respectively. The ab initio (1A1) NaH2 + PES yielded a dissociation energy (D 0) value of 10.3 kJ mol−1, which is in excellent agreement with the experimental value of 10.3 ± 0.8 kJ mol−1 (Bushnell et al. in J Phys Chem 98:2044, 1994). An analytical dipole moment surface was constructed using 90 CCSD(T) points. Rovibrational spectra of (1A1) NaH2 +, (1A′) NaHD+ and (1A1) NaD2 + for v ≤ 10, J ≤ 5 were constructed using rovibrational transition moment matrix elements calculated in a novel manner that employs the analytical dipole moment surface (DMS). The rovibrational structure of the Na+–H2 v HH = 1 ← v HH = 0 band was calculated and compared to that of Li+–H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gianturco FA, Giorgi PG, Berriche H, Gadea FX (1996) Astron Astrophys Supp Ser 117:377

    Article  CAS  Google Scholar 

  2. Sanz C, Bodo E, Gianturco FA (2005) Chem Phys 314:135

    Article  CAS  Google Scholar 

  3. Page AJ, von Nagy-Felsobuki EI (2008) J Mol Struct (Theochem) 853:53

    Article  CAS  Google Scholar 

  4. Burrows A, Volobuyev M (2003) Astrophys J 583:985

    Article  CAS  Google Scholar 

  5. Page AJ, von Nagy-Felsobuki EI (2007) J Phys Chem A 111:4478

    Article  CAS  Google Scholar 

  6. Kraemer WP, Spirko V (2006) Chem Phys 330:190

    Article  CAS  Google Scholar 

  7. Emmeluth C, Poad BLJ, Thompson CD, Weddle GH, Bieske EJ (2007) J Chem Phys 126:204309

    Article  CAS  Google Scholar 

  8. Thompson CD, Emmeluth C, Poad BLJ, Weddle GH, Bieske EJ (2006) J Chem Phys 125:044310

    Article  CAS  Google Scholar 

  9. Papousek D, Aliev M (1982) Molecular vibration-rotation spectra. Elsevier, Prague

    Google Scholar 

  10. Switalski JD, Huang JTJ, Schwartz ME (1974) J Chem Phys 60:2252

    Article  CAS  Google Scholar 

  11. Falcetta MF, Pazun JL, Dorko MJ, Kitchen D, Siska PE (1993) J Phys Chem 97:1011

    Article  CAS  Google Scholar 

  12. Curtiss LA, Pople JA (1988) J Phys Chem 92:894

    Article  CAS  Google Scholar 

  13. Bushnell JE, Kemper PR, Bowers MT (1994) J Phys Chem 98:2044

    Article  CAS  Google Scholar 

  14. Tamassy-Lentei I, Szaniszlo J (2000) J Mol Struct (Theochem) 501:403

    Article  Google Scholar 

  15. Barbatti M, Jalbert G, Nascimento MAC (2001) J Chem Phys 114:2213

    Article  CAS  Google Scholar 

  16. Vitillo JG, Damin A, Zecchina A, Ricchiardi G (2005) J Chem Phys 122:114311

    Article  Google Scholar 

  17. Page AJ, von Nagy-Felsobuki EI (2008) Chem Phys 351:37

    Article  CAS  Google Scholar 

  18. Page AJ, von Nagy-Felsobuki EI (2007) Mol Phys 105:2527

    Article  CAS  Google Scholar 

  19. Roos BO, Veryazov V, Widmark P (2004) Theor Chem Acc 111:345

    CAS  Google Scholar 

  20. Woon DE, Dunning TH (1994) J Chem Phys 100:2975

    Article  CAS  Google Scholar 

  21. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  22. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  23. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  24. Wells B, Wilson S (1983) Chem Phys Lett 101:429

    Article  CAS  Google Scholar 

  25. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, et al (2006) MOLPRO, v. 2006.1, a package of ab initio programs. http://www.molpro.net

  26. Carney GD, Langhoff SR, Curtiss LA (1977) J Chem Phys 66:3724

    Article  CAS  Google Scholar 

  27. Harris DO, Engerholm GG, Gwinn WD (1965) J Chem Phys 43:1515

    Article  Google Scholar 

  28. Watson JKG (1968) Mol Phys 15:479

    Article  CAS  Google Scholar 

  29. Burton PG, von Nagy-Felsobuki E, Doherty G, Hamilton M (1984) Chem Phys 83:83

    Article  CAS  Google Scholar 

  30. Searles DJ, von Nagy-Felsobuki EI (1988) Am J Phys 56:444

    Article  CAS  Google Scholar 

  31. Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall, New-Jersey

    Google Scholar 

  32. Searles DJ, von Nagy-Felsobuki EI (1991) J Chem Phys 95:1107

    Article  CAS  Google Scholar 

  33. Sudarko, Hughes JM, von Nagy-Felsobuki EI (2000) Aust J Phys 53:665

    CAS  Google Scholar 

  34. Zare RN (1987) Angular momentum. Wiley, New York

    Google Scholar 

  35. Dixon DA, Gole JL, Komornicki A (1988) J Phys Chem 92:1378

    Article  CAS  Google Scholar 

  36. Searles DJ, von Nagy-Felsobuki EI (1991) Phys Rev A 43:3365

    Article  CAS  Google Scholar 

  37. Searles DJ, von Nagy-Felsobuki EI (1991) In vibrational spectra and structure. Elsevier, New York

    Google Scholar 

  38. Searles DJ, von Nagy-Felsobuki EI (1992) Comp Phys Commun 67:527

    Article  CAS  Google Scholar 

  39. Searles DJ, von Nagy-Felsobuki EI (1991) Ab initio calculations of vibrational band origins. Elsevier, New York

    Google Scholar 

  40. Jordan KD, Kinsey JL, Silbey R (1974) J Chem Phys 61:911

    Article  CAS  Google Scholar 

  41. Jorish VS, Scherbak NB (1979) Chem Phys Lett 67:160

    Article  CAS  Google Scholar 

  42. Pardo A, Camacho JJ, Poyato JML (1986) Chem Phys Lett 131:490

    Article  CAS  Google Scholar 

  43. Ogilvie JF (1981) Proc Roy Soc London Ser A A378:387

    Google Scholar 

  44. Forsythe GE, Malcolm MA, Moler CB (1977) Computer Methods for Mathematical Computations. Prentice-Hall, New York

    Google Scholar 

  45. Gabriel W, Reinsch E-A, Rosmus P, Carter S, Handy NC (1993) J Chem Phys 99:897

    Article  CAS  Google Scholar 

  46. Fink U, Wiggins T, Rank D (1965) J Mol Spec 18:384

    Article  Google Scholar 

  47. Wolniewicz L (1966) J Chem Phys 45:515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the Australian Partnership for Advanced Computing (APAC), the Australian Centre for Advanced Computing and Communications (AC3) and the high-performance computing facility of The University of Newcastle, Australia. A.J.P. wishes to acknowledge support from the Australian postgraduate award scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellak I. von Nagy-Felsobuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, A.J., von Nagy-Felsobuki, E.I. Ab Initio rovibrational spectrum of the NaH2 + ion–quadrupole complex. Theor Chem Account 122, 87–100 (2009). https://doi.org/10.1007/s00214-008-0487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0487-7

Keywords

Navigation