Skip to main content

Advertisement

Log in

A theoretical investigation of intermolecular interaction of a phthalimide based “on–off” sensor with different halide ions: tuning its efficiency and electro-optical properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The interaction between chemosensor, N-(2-methyl-1,3-dioxo-indan-5-yl)-benzamide (1) and different halide ions (F, Cl and Br) has been investigated using density functional theory (DFT). A clear insight of the sensor anion binding process has been presented. Our calculations revealed that the observed colorimetric and fluorescent signals are induced due to the ground state deprotonation of the sensor molecule caused by F which has two times higher binding affinity than other halide ions (Cl and Br). Derivatives of system 1 have been made to find a better sensor with higher binding affinity and longer wavelength of absorption. All the derivatives are better sensors than the parent 1 except 4-methyl-N-(2-methyl-1,3-dioxo-indan-5-yl)-benzamide (2). Among these derivatives, trimethyl-[4-(2-methyl-1,3-dioxo-indan-5-ylcarbamoyl)-phenyl]-ammonium (8) and (5-benzoylamino-1,3-dioxo-indan-2-yl)-trimethyl-ammonium (9) showed a change to higher binding energies of about 58 Kcal/mol and longer absorption wavelengths of 53 nm after deprotonation process than the parent system 1 which is highly demanded in selective chemical sensing. Systems 8, 9 and their deprotonated zwitterionic forms (8z and 9z) have also been studied for their nonlinear optical responses. Systems 8, 9 showed significantly good first hyperpolarizability (β) of 84 × 10−30 and 40 × 10−30 esu, respectively. These β values increase in zwitterionic states up to 216 × 10−30 and 109 × 10−30 esu, respectively after deprotonation with F, representing a new signal of deprotonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hulanicki A, Glab S, Ingman F (1991) Pure Appl Chem 63:1247. doi:10.1351/pac199163091247

    Article  Google Scholar 

  2. Stibor I, Zlatuskova P (2005) Chiral recognition of anions. Anion Sens 255:31

    CAS  Google Scholar 

  3. Liu B, Tian H (2005) J Mater Chem 15:2681. doi:10.1039/b501234a

  4. Kleerekoper M (1998) Endocr Metab Clin 27:441. doi:10.1016/S0889-8529(05)70015-3

    Article  CAS  Google Scholar 

  5. Cho EJ, Ryu BJ, Lee YJ, Nam KC (2005) Org Lett 7:2607. doi:10.1021/ol0507470

    Article  CAS  Google Scholar 

  6. Thiagarajan V, Ramamurthy P, Thirumalai D, Ramakrishnan VT (2005) Org Lett 7:657. doi:10.1021/ol047463k

    Article  CAS  Google Scholar 

  7. Niikura K, Metzger A, Anslyn EV (1998) J Am Chem Soc 120:8533. doi:10.1021/ja980990c

    Article  CAS  Google Scholar 

  8. Gunnlaugsson T, Ali HDP, Glynn M, Kruger PE, Hussey GM, Pfeffer FM, dos Santos CMG, Tierney J (2005) J Fluoresc 15:287. doi:10.1007/s10895-005-2627-y

    Article  CAS  Google Scholar 

  9. Lin ZH, Zhao YG, Duan CY, Zhang BG, Bai ZP (2006) J Royal chem Soc 3678

  10. Choi K, Hamilton AD (2001) Angew Chem Int Ed 40:3912. doi:10.1002/1521-3773(20011015)40:20<3912::AID-ANIE3912>3.0.CO;2-R

    Article  CAS  Google Scholar 

  11. Wallace KJ, Belcher WJ, Turner DR, Syed KF, Steed JW (2003) J Am Chem Soc 125:9699. doi:10.1021/ja034921w

    Article  CAS  Google Scholar 

  12. Amendola V, Esteban-Gomez D, Fabbrizzi L, Licchelli M (2006) Acc Chem Res 39:343. doi:10.1021/ar050195l

    Article  CAS  Google Scholar 

  13. Boiocchi M, Del Boca L, Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2004) J Am Chem Soc 126:16507. doi:10.1021/ja045936c

    Article  CAS  Google Scholar 

  14. Boiocchi M, Del Boca L, Esteban-Gomez D, Fabbrizzi L, Licchelli M, Monzani E (2005) Chem Eur J 11:3097. doi:10.1002/chem.200401049

    Article  CAS  Google Scholar 

  15. Tong H, Zhou G, Wang LX, Jing XB, Wang FS, Zhang JP (2003) Tetrahedron Lett 44:131. doi:10.1016/S0040-4039(02)02504-2

    Article  CAS  Google Scholar 

  16. Zhang X, Guo L, Wu FY, Jiang YB (2003) Org Lett 5:2667. doi:10.1021/ol034846u

    Article  CAS  Google Scholar 

  17. Boiocchi M, Fabbrizzi L, Foti F, Monzani E, Poggi A (2005) Org Lett 7:3417. doi:10.1021/ol050981q

    Article  CAS  Google Scholar 

  18. Gomez DE, Fabbrizzi L, Licchelli M, Monzani E (2005) Org Biomol Chem 3:1495. doi:10.1039/b500123d

    Article  CAS  Google Scholar 

  19. Hirano J, Hamase K, Zaitsu K (2006) Tetrahedron 62:10065. doi:10.1016/j.tet.2006.08.060

    Article  CAS  Google Scholar 

  20. Li Z, Zhang JP (2006) Chem Phys 331:159. doi:10.1016/j.chemphys.2006.10.017

    Article  CAS  Google Scholar 

  21. Neumann T, Dienes Y, Baumgartner T (2006) Org Lett 8:495. doi:10.1021/ol052911p

    Article  CAS  Google Scholar 

  22. Hudnall TW, Melaimi M, Gabbaı FP (2006) Org Lett 8:2747. doi:10.1021/ol060791v

    Article  CAS  Google Scholar 

  23. Liu XY, Bai DR, Wang S (2006) Angew Chem Int Ed 45:5475. doi:10.1002/anie.200601286

    Article  CAS  Google Scholar 

  24. Wiskur SL, Floriano PN, Anslyn EV, McDevitt JT (2003) Angew Chem Int Ed 42:2070. doi:10.1002/anie.200351058

    Article  CAS  Google Scholar 

  25. Sarkar M, Yellampalli R, Bhattacharya B, Kanaparthi RK, Samanta A (2007) J Chem Sci 119:91. doi:10.1007/s12039-007-0015-7

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02 Gaussian Inc Wallingford CT

  27. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 41:785. doi:10.1103/PhysRevB.37.785

    Article  Google Scholar 

  29. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  30. van der Wijst T, Fonseca Guerra C, Swart M, Bickelhaupt FM (2006) Chem Phys Lett 426:415. doi:10.1016/j.cplett.2006.06.057

    Article  CAS  Google Scholar 

  31. Park YC, Lee JS (2007) Bull Korean Chem Soc 28:386

    Article  CAS  Google Scholar 

  32. Haranczyk M, Rak J, Gutowski M, Radisic D, Stokes ST, Bowen KH (2005) J Phys Chem B 109:13383. doi:10.1021/jp050246w

    Article  CAS  Google Scholar 

  33. Rak J, Skurski P, Simons J, Gutowski M (2001) J Am Chem Soc 123:11695. doi:10.1021/ja011357l

    Article  CAS  Google Scholar 

  34. Daübkowska I, Rak J, Gutowski M (2002) J Phys Chem A 106:7423. doi:10.1021/jp020947i

    Article  CAS  Google Scholar 

  35. van Mourik T, Price SL, Clary DC (1999) J Phys Chem A 103:1611. doi:10.1021/jp983337k

  36. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135. doi:10.1021/j100180a030

    Article  CAS  Google Scholar 

  37. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218. doi:10.1063/1.477483

    Article  CAS  Google Scholar 

  38. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454. doi:10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  39. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669. doi:10.1002/jcc.10189

    Article  CAS  Google Scholar 

  40. Eckert F, Klamt A (2002) AIChE J 48:369. doi:10.1002/aic.690480220

    Article  CAS  Google Scholar 

  41. Miertus S, Scrocco E, Tomasi (1981) J Chem Phys 55:117 doi:10.1016/0301-0104(81)85090-2

  42. Onsager (1936) J Am Chem Soc 58:1486

  43. Rutkowski KS, Melikova SM, Rodziewicz P, Herrebout WA, van der Veken BJ, Koll A (2008) J Mol Struct 880:64. doi:10.1016/j.molstruc.2007.10.026

    Article  CAS  Google Scholar 

  44. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  45. Jose DA, Singh A, Das A, Ganguly B (2007) Tetrahedron Lett 48:3695. doi:10.1016/j.tetlet.2007.03.120

    Article  CAS  Google Scholar 

  46. Johansson P, Abrahamsson E, Jacobsson P (2005) J Mol Struct THEOCHEM 717:215. doi:10.1016/j.theochem.2004.12.021

    Article  CAS  Google Scholar 

  47. Johansson P, Jacobsson P (2005) Electrochim Acta 50:3782. doi:10.1016/j.electacta.2005.02.062

    Article  CAS  Google Scholar 

  48. Solimannejad M, Alkorta I, Elguero J (2007) J Mol Struct THEOCHEM 819:136. doi:10.1016/j.theochem.2007.05.037

    Article  CAS  Google Scholar 

  49. Shang XF, Xu XF, Lin H, Shao A, Lin HK (2007) J Incl Phenom Macro 58:275. doi:10.1007/s10847-006-9154-6

    Article  CAS  Google Scholar 

  50. Brooks SJ, Evans LS, Gale PA, Hursthouse MB, Light ME (2005) Chem Comm 734

  51. Steiner T (2002) Angew Chem Int Ed 41:48. doi:10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

    Article  CAS  Google Scholar 

  52. Domenicano A, Hargittai I (2002) Strength from weakness: structural consequences of weak interactions in molecules, supramolecules, and crystals. Kluwer, Dordrecht, p 286

  53. Chen F, Davidson ER (2002) Chem Phys Lett 360:99. doi:10.1016/S0009-2614(02)00807-2

    Article  CAS  Google Scholar 

  54. Greenwood NN, Earnshaw A (1997) Chemistry of the Elements, 2nd Edition edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  55. Peng XJ, Wu YK, Fan JL, Tian MZ, Han KL (2005) J Org Chem 70:10524. doi:10.1021/jo051766q

    Article  CAS  Google Scholar 

  56. Thiagarajan V, Ramamurthy P (2007) J Lumin 126:886. doi:10.1016/j.jlumin.2007.01.003

    Article  CAS  Google Scholar 

  57. Chaignon NM, Fairlamb IJS, Kapdi AR, Taylor RJK, Whitwood AC (2004) J Mol Catal A Chem 219:191–199. doi:10.1016/j.molcata.2004.05.008

    Article  CAS  Google Scholar 

  58. Hu A, Lin W (2005) Org Lett 7:455. doi:10.1021/ol0474812

    Article  CAS  Google Scholar 

  59. Ernzerhof M, Perdew JP, Burke K (1997) Int J Quantum Chem 64:285. doi:10.1002/(SICI)1097-461X(1997)64:3<285::AID-QUA2>3.0.CO;2-S

    Article  CAS  Google Scholar 

  60. Amendola V, Boiocchi M, Fabbrizzi L, Palchetti A (2005) Chem Eur J 11:5648. doi:10.1002/chem.200500351

    Article  CAS  Google Scholar 

  61. Morley JO (1996) J Mol Struct THEOCHEM 365:1. doi:10.1016/0166-1280(96)04492-2

    Article  CAS  Google Scholar 

  62. Verbiest T, Houbrechts S, Kauranen M, Clays K, Persoons A (1997) J Mater Chem 7:2175. doi:10.1039/a703434b

    Article  CAS  Google Scholar 

  63. Lambert C, Standlar S, Bourhill G, Brauchie C (1996) Angew Chem Int Ed Engl 35:644. doi:10.1002/anie.199606441

    Article  CAS  Google Scholar 

  64. Abbotto A, Bradamante S, Facchetti A, Pagani GA, Ledoux I, Zyss (1998) J Metr Res Soc Symp Soc 488:819

    Google Scholar 

  65. Abbotto A, Beverina L, Bradamante S, Facchetti A, Klein C, Pagani GA, Wortmann R (2003) Chem Eur J 9:1991. doi:10.1002/chem.200204356

    Article  CAS  Google Scholar 

  66. Qudar JL, Chemla DS (1977) J Chem Phys 66:2664. doi:10.1063/1.434213

    Article  Google Scholar 

  67. Bhanuprakash K, Rao Laxmikanth (1999) J Chem Phys Lett 314:282. doi:10.1016/S0009-2614(99)01141-0

    Article  CAS  Google Scholar 

  68. Abe J, Shirai Y (1997) J Phys Chem B 101:576. doi:10.1021/jp961711f

    Article  CAS  Google Scholar 

  69. Yang GC, Su ZM, Qin CC, Zhao YH (2005) J Chem Phys 123:134302. doi:10.1063/1.2039707

    Article  CAS  Google Scholar 

  70. Yang GC, Su ZM, Qin CC (2006) J Phys Chem A 110:4817. doi:10.1021/jp0600099

    Article  CAS  Google Scholar 

  71. Yang GC, Liao Y, Su ZM, Zhang HY, Wang Y (2006) J Phys Chem A 110:8758. doi:10.1021/jp061286i

    Article  CAS  Google Scholar 

  72. Yang GC, Guan W, Yan LK, Su ZM (2006) J Phys Chem B 110:23092. doi:10.1021/jp062820p

    Google Scholar 

  73. Yang GC, Shi SQ, Guan W, Fang L, Su ZM (2006) J Mol Struct THEOCHEM 773:9. doi:10.1016/j.theochem.2006.06.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Project Nos. 20573016), Training Fund of NENU’S Scientific Innovation Project (NENU-STC07017) and Science Foundation for Young Teachers of Northeast Normal University (20070304), and are supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT). S.Muhammad also acknowledges Ministry of Education, Pakistan and China scholarship council (CSC) for the award of scholarship in Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhammad, S., Liu, C., Zhao, L. et al. A theoretical investigation of intermolecular interaction of a phthalimide based “on–off” sensor with different halide ions: tuning its efficiency and electro-optical properties. Theor Chem Account 122, 77–86 (2009). https://doi.org/10.1007/s00214-008-0486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0486-8

Keywords

Navigation