Skip to main content
Log in

Can semi-empirical models describe HCl dissociation in water?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We discuss the failure of commonly used AM1 and PM3 semiempirical methods to correctly describe acid dissociation. We focus our analysis on HCl because of its physicochemical importance and its relevance in atmospheric chemistry. The structure of non-dissociated and dissociated HCl – (H2O) n clusters is accounted for. The very bad results obtained with PM3 (and also with AM1) are related to large errors in gas-phase proton affinity of water and gas-phase acidity of HCl. Indeed, estimation of pKa values shows that neither AM1 nor PM3 are able to predict HCl dissociation in liquid water since HCl is found to be a weaker acid than H3O+. We have proposed in previous works a modified PM3 approach (PM3-MAIS) adapted to intermolecular calculations. It is derived from PM3 by reparameterization of the core–core functions using ab initio data. Since parameters for H–Cl and O–Cl core–core interactions were not yet available, we have carried out the corresponding optimization. Application of the PM3-MAIS method to HCl dissociation in HCl–(H2O) n clusters leads to a huge improvement over PM3 results. Though the method predicts a slightly overestimated HCl acidity in water environment, the overall agreement with ab initio calculations is very satisfying and justifies efforts to develop new semiempirical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao J (1996) In: Reviews in computational chemistry, Vol. 7 (Lipkowitz KB, Boyd DB, eds.), VCH Publishers, pp. 119

  2. Gao J, Luque FJ, Orozco M (1993). J Chem Phys 98: 2975

    Article  CAS  Google Scholar 

  3. Liu H, Müller-Plathe F, van Gunsteren WF (1995). J Chem Phys 102: 1722

    Article  CAS  Google Scholar 

  4. Cui Q, Guo H, Karplus M (2002). J Chem Phys 117: 5617

    Article  CAS  Google Scholar 

  5. Bredow T, Jug K (2005). Theor Chem Acc 113: 1

    Article  CAS  Google Scholar 

  6. Csonka GI, Angyán J (1997). J Mol Struct (Theochem) 393: 31

    Article  CAS  Google Scholar 

  7. Bernal-Uruchurtu MI, Martins-Costa MTC, Millot C, Ruiz-López MF (2000). J Comput Chem 21: 572

    Article  CAS  Google Scholar 

  8. Harb W, Bernal-Uruchurtu MI, Ruiz-López MF (2004). Theor Chem Acc 112: 204

    Article  CAS  Google Scholar 

  9. Burk P, Herodes K, Koppel I, Koppel I (1993). Int J Quantum Chem 48: 633

    Article  Google Scholar 

  10. Burk P, Koppel I (1993). Theor Chem Acc 86: 417

    Article  CAS  Google Scholar 

  11. Ozment JL, Schmiedekamp AM (1992). Int J Quantum Chem 43: 783

    Article  CAS  Google Scholar 

  12. Lambert A, Regnouf-de-Vains JB, Rinaldi D, Ruiz-López MF (2006). J Phys Org Chem 19: 157

    Article  CAS  Google Scholar 

  13. Clark T (2000). J Mol Struct (Theochem) 530: 1

    Article  CAS  Google Scholar 

  14. Winget P, Selcuki C, Horn AHC, Martin B, Clark T (2003). Theor Chem Acc 110: 254

    CAS  Google Scholar 

  15. López X, York DM, Dejaegere A, Karplus M (2002). Int J Quantum Chem 86: 10

    Article  Google Scholar 

  16. Repasky MP, Chandrasekhar J, Jorgensen JW (2002). J Comput Chem 23: 1601

    Article  CAS  Google Scholar 

  17. Tubert-Brohman I, Werneck Guimarães CR, Repasky MP, Jorgensen WL (2004). J Comp Chem 25: 138

    Article  CAS  Google Scholar 

  18. Martin B, Clark T (2006). Int J Quantum Chem 106: 1208

    Article  CAS  Google Scholar 

  19. Dewar MJS, Zoebisch EG, Healy E, Stewart JJP (1985). J Am Chem Soc 107: 3902

    Article  CAS  Google Scholar 

  20. Stewart JJP (1989). J Comput Chem 10: 209

    Article  CAS  Google Scholar 

  21. Bernal-Uruchurtu MI, Ruiz-López MF (2000). Chem Phys Lett 330: 118

    Article  CAS  Google Scholar 

  22. Mantz YA, Geiger FM, Molina LT, Molina MJ, Trout BL (2001). J Phys Chem A 105: 7037

    Article  CAS  Google Scholar 

  23. Buesnel R, Hillier I, Masters HAJ (1995). Chem Phys Lett 247: 391

    Article  CAS  Google Scholar 

  24. Lee C, Sosa C, Planas M, Novoa JJ (1996). J Chem Phys 104: 8

    Google Scholar 

  25. Estrin DA, Kohanoff J, Laria DH, Weht RO (1997). Chem Phys Lett 280: 280

    Article  CAS  Google Scholar 

  26. Ando K, Hynes JT (1997). J Phys Chem B 101: 10464

    Article  CAS  Google Scholar 

  27. Bacelo DA, Binning RCJ, Ishikawa Y (1999). J Phys Chem A 103: 4631

    Article  CAS  Google Scholar 

  28. Svanberg M, Pettersson JBC, Bolton K (2000). J Phys Chem A 104: 5787

    Article  CAS  Google Scholar 

  29. Milet A, Struniewicz C, Moszynski R, Wormer PES (2001). J Chem Phys 115: 349

    Article  CAS  Google Scholar 

  30. Chaban GM, Benny Gerber RB, Janda KC (2001). J Phys Chem A 105: 8323

    Article  CAS  Google Scholar 

  31. Gilligan JJ, Castleman AWJ (2001). J Phys Chem A 105: 5601

    Article  CAS  Google Scholar 

  32. Bolton K, Pettersson JBC (2001). J Am Chem Soc 123: 7360

    Article  CAS  Google Scholar 

  33. Uras-Aytemiz N, Joyce C, Devlin JP (2001). J Phys Chem A 105: 10497

    Article  CAS  Google Scholar 

  34. Cabaleiro-Lago E, Hermida-Ramón JM, Rodríguez-Otero J (2002). J Chem Phys 117: 3160

    Article  CAS  Google Scholar 

  35. Huneycutt AJ, Stickland RJ, Hellberg F, Saykally RJ (2003). J Chem Phys 118: 1221

    Article  CAS  Google Scholar 

  36. Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2004). J Chem Phys 121: 7840

    Article  CAS  Google Scholar 

  37. Ortega IK, Escribano R, Fernández-Torre D, Herrero VJ, Maté B, Moreno MA (2004). Chem Phys Lett 396: 335

    Article  CAS  Google Scholar 

  38. Odde S, Mhin BJ, Lee S, Lee HM, Kim KS (2004). J Chem Phys 120: 9525

    Article  CAS  Google Scholar 

  39. Botti A, Bruni F, Ricci MA, Soper AK (2006). J Chem Phys 125: 014508

    Article  CAS  Google Scholar 

  40. Kisiel Z, Bialkowska-Jaworska E, Pszczolkowski L, Milet A, Struniewicz C, Moszynski M, Sadlej J (2000). J Chem Phys 112: 5767

    Article  CAS  Google Scholar 

  41. Chipot C, Gorb L, Rivail JL (1994). J Phys Chem 98: 1601

    Article  CAS  Google Scholar 

  42. Sobolewski AL, Domcke W (2003). J Phys Chem A 107: 1557

    Article  CAS  Google Scholar 

  43. Buesnel R, Hillier IH, Masters AJ (1995). Chem Phys Lett 247: 391

    Article  CAS  Google Scholar 

  44. Pastor N, Ortega-Blake I (1993). J Chem Phys 99: 7899

    Article  CAS  Google Scholar 

  45. Giese TJ, York DM (2005). J Chem Phys 123: 164108

    Article  CAS  Google Scholar 

  46. Alikhani ME, Silvi B (2003). Phys Chem Chem Phys 5: 2494

    Article  CAS  Google Scholar 

  47. Weimann M, Fárnýk M, Suhm MA (2002). Phys Chem Chem Phys 4: 3933

    Article  CAS  Google Scholar 

  48. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17, Suppl.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Bernal-Uruchurtu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arillo-Flores, O.I., Ruiz-López, M.F. & Bernal-Uruchurtu, M.I. Can semi-empirical models describe HCl dissociation in water?. Theor Chem Account 118, 425–435 (2007). https://doi.org/10.1007/s00214-007-0280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0280-z

Keywords

Navigation