Advertisement

Theoretical Chemistry Accounts

, Volume 118, Issue 2, pp 425–435 | Cite as

Can semi-empirical models describe HCl dissociation in water?

  • O. I. Arillo-Flores
  • M. F. Ruiz-López
  • M. I. Bernal-UruchurtuEmail author
Regular Article

Abstract

We discuss the failure of commonly used AM1 and PM3 semiempirical methods to correctly describe acid dissociation. We focus our analysis on HCl because of its physicochemical importance and its relevance in atmospheric chemistry. The structure of non-dissociated and dissociated HCl – (H2O) n clusters is accounted for. The very bad results obtained with PM3 (and also with AM1) are related to large errors in gas-phase proton affinity of water and gas-phase acidity of HCl. Indeed, estimation of pKa values shows that neither AM1 nor PM3 are able to predict HCl dissociation in liquid water since HCl is found to be a weaker acid than H3O+. We have proposed in previous works a modified PM3 approach (PM3-MAIS) adapted to intermolecular calculations. It is derived from PM3 by reparameterization of the core–core functions using ab initio data. Since parameters for H–Cl and O–Cl core–core interactions were not yet available, we have carried out the corresponding optimization. Application of the PM3-MAIS method to HCl dissociation in HCl–(H2O) n clusters leads to a huge improvement over PM3 results. Though the method predicts a slightly overestimated HCl acidity in water environment, the overall agreement with ab initio calculations is very satisfying and justifies efforts to develop new semiempirical methods.

Keywords

Semi-empirical Acid dissociation Proton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gao J (1996) In: Reviews in computational chemistry, Vol. 7 (Lipkowitz KB, Boyd DB, eds.), VCH Publishers, pp. 119Google Scholar
  2. 2.
    Gao J, Luque FJ, Orozco M (1993). J Chem Phys 98: 2975 CrossRefGoogle Scholar
  3. 3.
    Liu H, Müller-Plathe F, van Gunsteren WF (1995). J Chem Phys 102: 1722 CrossRefGoogle Scholar
  4. 4.
    Cui Q, Guo H, Karplus M (2002). J Chem Phys 117: 5617 CrossRefGoogle Scholar
  5. 5.
    Bredow T, Jug K (2005). Theor Chem Acc 113: 1 CrossRefGoogle Scholar
  6. 6.
    Csonka GI, Angyán J (1997). J Mol Struct (Theochem) 393: 31 CrossRefGoogle Scholar
  7. 7.
    Bernal-Uruchurtu MI, Martins-Costa MTC, Millot C, Ruiz-López MF (2000). J Comput Chem 21: 572 CrossRefGoogle Scholar
  8. 8.
    Harb W, Bernal-Uruchurtu MI, Ruiz-López MF (2004). Theor Chem Acc 112: 204 CrossRefGoogle Scholar
  9. 9.
    Burk P, Herodes K, Koppel I, Koppel I (1993). Int J Quantum Chem 48: 633 CrossRefGoogle Scholar
  10. 10.
    Burk P, Koppel I (1993). Theor Chem Acc 86: 417 CrossRefGoogle Scholar
  11. 11.
    Ozment JL, Schmiedekamp AM (1992). Int J Quantum Chem 43: 783 CrossRefGoogle Scholar
  12. 12.
    Lambert A, Regnouf-de-Vains JB, Rinaldi D, Ruiz-López MF (2006). J Phys Org Chem 19: 157 CrossRefGoogle Scholar
  13. 13.
    Clark T (2000). J Mol Struct (Theochem) 530: 1 CrossRefGoogle Scholar
  14. 14.
    Winget P, Selcuki C, Horn AHC, Martin B, Clark T (2003). Theor Chem Acc 110: 254 Google Scholar
  15. 15.
    López X, York DM, Dejaegere A, Karplus M (2002). Int J Quantum Chem 86: 10 CrossRefGoogle Scholar
  16. 16.
    Repasky MP, Chandrasekhar J, Jorgensen JW (2002). J Comput Chem 23: 1601 CrossRefGoogle Scholar
  17. 17.
    Tubert-Brohman I, Werneck Guimarães CR, Repasky MP, Jorgensen WL (2004). J Comp Chem 25: 138 CrossRefGoogle Scholar
  18. 18.
    Martin B, Clark T (2006). Int J Quantum Chem 106: 1208 CrossRefGoogle Scholar
  19. 19.
    Dewar MJS, Zoebisch EG, Healy E, Stewart JJP (1985). J Am Chem Soc 107: 3902 CrossRefGoogle Scholar
  20. 20.
    Stewart JJP (1989). J Comput Chem 10: 209 CrossRefGoogle Scholar
  21. 21.
    Bernal-Uruchurtu MI, Ruiz-López MF (2000). Chem Phys Lett 330: 118 CrossRefGoogle Scholar
  22. 22.
    Mantz YA, Geiger FM, Molina LT, Molina MJ, Trout BL (2001). J Phys Chem A 105: 7037 CrossRefGoogle Scholar
  23. 23.
    Buesnel R, Hillier I, Masters HAJ (1995). Chem Phys Lett 247: 391 CrossRefGoogle Scholar
  24. 24.
    Lee C, Sosa C, Planas M, Novoa JJ (1996). J Chem Phys 104: 8 Google Scholar
  25. 25.
    Estrin DA, Kohanoff J, Laria DH, Weht RO (1997). Chem Phys Lett 280: 280 CrossRefGoogle Scholar
  26. 26.
    Ando K, Hynes JT (1997). J Phys Chem B 101: 10464 CrossRefGoogle Scholar
  27. 27.
    Bacelo DA, Binning RCJ, Ishikawa Y (1999). J Phys Chem A 103: 4631 CrossRefGoogle Scholar
  28. 28.
    Svanberg M, Pettersson JBC, Bolton K (2000). J Phys Chem A 104: 5787 CrossRefGoogle Scholar
  29. 29.
    Milet A, Struniewicz C, Moszynski R, Wormer PES (2001). J Chem Phys 115: 349 CrossRefGoogle Scholar
  30. 30.
    Chaban GM, Benny Gerber RB, Janda KC (2001). J Phys Chem A 105: 8323 CrossRefGoogle Scholar
  31. 31.
    Gilligan JJ, Castleman AWJ (2001). J Phys Chem A 105: 5601 CrossRefGoogle Scholar
  32. 32.
    Bolton K, Pettersson JBC (2001). J Am Chem Soc 123: 7360 CrossRefGoogle Scholar
  33. 33.
    Uras-Aytemiz N, Joyce C, Devlin JP (2001). J Phys Chem A 105: 10497 CrossRefGoogle Scholar
  34. 34.
    Cabaleiro-Lago E, Hermida-Ramón JM, Rodríguez-Otero J (2002). J Chem Phys 117: 3160 CrossRefGoogle Scholar
  35. 35.
    Huneycutt AJ, Stickland RJ, Hellberg F, Saykally RJ (2003). J Chem Phys 118: 1221 CrossRefGoogle Scholar
  36. 36.
    Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2004). J Chem Phys 121: 7840 CrossRefGoogle Scholar
  37. 37.
    Ortega IK, Escribano R, Fernández-Torre D, Herrero VJ, Maté B, Moreno MA (2004). Chem Phys Lett 396: 335 CrossRefGoogle Scholar
  38. 38.
    Odde S, Mhin BJ, Lee S, Lee HM, Kim KS (2004). J Chem Phys 120: 9525 CrossRefGoogle Scholar
  39. 39.
    Botti A, Bruni F, Ricci MA, Soper AK (2006). J Chem Phys 125: 014508 CrossRefGoogle Scholar
  40. 40.
    Kisiel Z, Bialkowska-Jaworska E, Pszczolkowski L, Milet A, Struniewicz C, Moszynski M, Sadlej J (2000). J Chem Phys 112: 5767 CrossRefGoogle Scholar
  41. 41.
    Chipot C, Gorb L, Rivail JL (1994). J Phys Chem 98: 1601 CrossRefGoogle Scholar
  42. 42.
    Sobolewski AL, Domcke W (2003). J Phys Chem A 107: 1557 CrossRefGoogle Scholar
  43. 43.
    Buesnel R, Hillier IH, Masters AJ (1995). Chem Phys Lett 247: 391 CrossRefGoogle Scholar
  44. 44.
    Pastor N, Ortega-Blake I (1993). J Chem Phys 99: 7899 CrossRefGoogle Scholar
  45. 45.
    Giese TJ, York DM (2005). J Chem Phys 123: 164108 CrossRefGoogle Scholar
  46. 46.
    Alikhani ME, Silvi B (2003). Phys Chem Chem Phys 5: 2494 CrossRefGoogle Scholar
  47. 47.
    Weimann M, Fárnýk M, Suhm MA (2002). Phys Chem Chem Phys 4: 3933 CrossRefGoogle Scholar
  48. 48.
    Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17, Suppl.1Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • O. I. Arillo-Flores
    • 1
  • M. F. Ruiz-López
    • 2
  • M. I. Bernal-Uruchurtu
    • 1
    Email author
  1. 1.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Equipe de Chimie et Biochimie théoriques, UMR CNRS-UHP 7565Nancy-UniversityVandoeuvre-lès-NancyFrance

Personalised recommendations