Skip to main content

Towards an Accurate Model for Halogens in Aqueous Solutions

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Abstract

The overwhelming progress and constant evolution of computational and theoretical methods in chemistry have provided us a more detailed molecular description of some complex molecular properties. Our group has intended to do so for an old problem: the solvatochromic properties of halogens in aqueous systems. There are beautiful experiments that show how sensitive Br2 and Cl2 are to the structure of the environment around them. In this chapter, we present the tests and calculations performed with different theoretical methods to identify their reliability as pieces of a multi-scale study aimed to address open questions related with this phenomenon. We used different approaches to explicitly take into account the solvent effect and tested several theoretical methods on the solvatochromic effect of small clusters. The combination of a semiempirical Born-Oppenheimer molecular dynamics study (SEBOMD) of Br2 in liquid water solution using PM3-PIF and then, the evaluation of the effect the closest water molecules have on the shifts are presented. This is a first step towards a robust multi-scale protocol ad hoc designed for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    sigma-hole: A region of electropositive potential due to the depletion of electron density occurring at the ends of the covalent sigma X-Y bond. It can favorably interact with a lone pair of electrons on a heteroatom from the donor.

  2. 2.

    Nomenclature 5n6m indicates a water cage composed of n pentagonal and m hexagonal faces.

References

  1. Kerenskaya G, Goldschleger IU, Apkarian VA, Janda KC (2006) Spectroscopic signatures of halogens in clathrate hydrate cages. 1. Bromine. J Phys Chem A 110(51):13792–13798. doi:10.1021/jp064523q

    Article  CAS  Google Scholar 

  2. Kerenskaya G, Goldschleger IU, Apkarian VA, Fleischer E, Janda KC (2007) Spectroscopic signatures of halogens in clathrate hydrate cages. 2. Iodine. J Phys Chem A 111(43):10969–10976. doi:10.1021/jp0747306

    Article  CAS  Google Scholar 

  3. Janda KC, Kerenskaya G, Goldschleger IU, Apkarian VA, Fleischer E (2008) UV-visible and resonance raman spectroscopy of halogen molecules in clathrate-hydrates. In: Proceedings of the 6th international conference on gas hydrates (ICGH 2008), Vancouver, British Columbia, Canada, 6–10 July 2008

    Google Scholar 

  4. Goldschleger IU, Kerenskaya G, Senekerimyan V, Janda KC, Apkarian VA (2008) Dynamical interrogation of the hydration cage of bromine in single crystal clathrate hydrates versus water. Phys Chem Chem Phys 10(48):7226–7232. doi:10.1039/b811529j

    Article  CAS  Google Scholar 

  5. Beckmann E (1889) Change of color of iodine solutions. Z Phyzik Chem 5:76

    Google Scholar 

  6. Gautier C, Charpy M (1890) Bromine color in solution. Compt Rend 110(189):645

    Google Scholar 

  7. Mulliken RS (1950) Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J Am Chem Soc 72(1):600–608. doi:10.1021/ja01157a151

    Article  CAS  Google Scholar 

  8. Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Nobel Lecture, Oslo

    Google Scholar 

  9. Fredin L, Nelander B (1973) An infrared and CNDO study of a water-chlorine complex. J Mol Struct 16(2):217–224

    Article  CAS  Google Scholar 

  10. Dahl T, Roeggen I (1996) An analysis of electron donor-acceptor complexes:H2O-F2, H2O-Cl2, and H2O-ClF. J Am Chem Soc 118(17):4152–4158. doi:10.1021/ja9537890

    Article  CAS  Google Scholar 

  11. Legon AC (1998) pi-Electron “Donor-acceptor” complexes B…ClF and the existence of the “chlorine bond”. Chem Eur J 4(10):1890–1897

    Article  CAS  Google Scholar 

  12. Legon AC (1999) Prereactive complexes of dihalogens XY with lewis bases B in the gas phase: a systematic case for the halogen analogue B···XY of the hydrogen bond B···HX. Angew Chem Int Ed 38(18):2686–2714

    Article  Google Scholar 

  13. Davey JB, Legon AC, Thumwood JMA (2001) Interaction of water and dichlorine in the gas phase: an investigation of H2O-Cl2 by rotational spectroscopy and ab initio calculations. J Chem Phys 114(14):6190–6202. doi:10.1063/1.1354178

    Article  CAS  Google Scholar 

  14. Legon AC, Thumwood JMA, Waclawik ER (2002) The interaction of water and dibromine in the gas phase: an investigation of the complex H2O-Br2 by rotational spectroscopy and ab initio calculations. Chem Eur J 8(4):940–950

    Article  CAS  Google Scholar 

  15. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12(28):7736–7747. doi:10.1039/c002129f

    Article  CAS  Google Scholar 

  16. Ham J (1954) The spectra of iodine solutions. III. The3II1-1Σ+ transition of the iodine molecule in solution. J Am Chem Soc 76(15):3886–3887. doi:10.1021/ja01644a004

    Article  CAS  Google Scholar 

  17. Bernal-Uruchurtu MI, Kerenskaya G, Janda KC (2009) Structure, spectroscopy and dynamics of halogen molecules interacting with water. Int Rev Phys Chem 28(2):223–265. doi:10.1080/01442350903017302

    Article  CAS  Google Scholar 

  18. Bernal-Uruchurtu MI, Hernández-Lamoneda R, Janda KC (2009) On the unusual properties of halogen bonds: a detailed ab initio study of X-2-(H2O)(1-5) clusters (X = Cl and Br). J Phys Chem A 113(19):5496–5505

    Article  CAS  Google Scholar 

  19. Santoyo-Flores JJ, Cedillo A, Bernal-Uruchurtu MI (2012) Br2 dissociation in water clusters: the catalytic role of water. Theor Chem Acc 132(1). doi:10.1007/s00214-012-1313-9

  20. Clark T, Hennemann M, Murray J, Politzer P (2007) Halogen bonding: the s-hole. J Mol Model 13(2):291–296

    Article  CAS  Google Scholar 

  21. Ibrahim MA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32(12):2564–2574. doi:10.1002/jcc.21836

    Article  CAS  Google Scholar 

  22. Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the OPLS-AA force field; application to potent anti-HIV agents. J Chem Theory Comp 8(10):3895–3801. doi:10.1021/ct300180w

  23. Kolář M, Hobza P (2012) On extension of the current biomolecular empirical force field for the description of halogen bonds. J Chem Theory Comp 8(4):1325–1333. doi:10.1021/ct2008389

    Article  Google Scholar 

  24. Du L, Gao J, Bi F, Wang L, Liu C (2013) A polarizable ellipsoidal force field for halogen bonds. J Comput Chem 34(23):2032–2040. doi:10.1002/jcc.23362

    Article  CAS  Google Scholar 

  25. Gresh N (2006) Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. Curr Pharm Des 12(17):2121–2158. doi:10.2174/138161206777585256

    Article  CAS  Google Scholar 

  26. Piquemal JP, Chevreau H, Gresh N (2007) Toward a separate reproduction of the contributions to the Hartree-Fock and DFT intermolecular interaction energies by polarizable molecular mechanics with the SIBFA potential. J Chem Theory Comp 3(3):824–837. doi:10.1021/ct7000182

    Article  CAS  Google Scholar 

  27. El Hage K, Piquemal JP, Hobaika Z, Maroun RG, Gresh N (2013) Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds? J Comput Chem 34(13):1125–1135. doi:10.1002/jcc.23242

    Article  Google Scholar 

  28. Schofield DP, Jordan KD (2009) Molecular dynamics simulations of bromine clathrate hydrates. J Phys Chem A 113(26):7431–7438. doi:10.1021/jp900237j

    Article  CAS  Google Scholar 

  29. Kubař T, Bodrog Z, Gaus M, Köhler C, Aradi B, Frauenheim T, Elstner M (2013) Parametrization of the SCC-DFTB method for halogens. J Chem Theory Comp 9(7):2939–2949. doi:10.1021/ct4001922

    Article  Google Scholar 

  30. Csonka GI, Ángyán JG (1997) The origin of the problems with the PM3 core repulsion function. J Mol Struct (Theochem) 393(1–3):31–38. doi:10.1016/S0166-1280(96)04872-5

    Article  CAS  Google Scholar 

  31. Bernal-Uruchurtu MI, Martins-Costa MTC, Millot C, Ruiz-López MF (2000) Improving description of hydrogen bonds at the semiempirical level: water-water interactions as test case. J Comput Chem 21(7):572–581

    Article  CAS  Google Scholar 

  32. Harb W, Bernal-Uruchurtu MI, Ruiz-López MF (2004) An improved semiempirical method for hydrated systems. Theor Chem Acc 112(4):204–216. doi:10.1007/s00214-004-0576-1

    Article  CAS  Google Scholar 

  33. Arillo-Flores OI, Ruiz-López MF, Bernal-Uruchurtu MI (2007) Can semi-empirical models describe HCl dissociation in water? Theor Chem Acc 118(2):425–435. doi:10.1007/s00214-007-0280-z

    Article  CAS  Google Scholar 

  34. Marion A, Monard G, Ruiz-Lopez MF, Ingrosso F (2014) Water interactions with hydrophobic groups: assessment and recalibration of semiempirical molecular orbital methods. J Chem Phys 141(3):034106. doi:10.1063/1.4886655

    Article  Google Scholar 

  35. Monard G, Bernal-Uruchurtu MI, van der Vaart A, Merz KM Jr, Ruiz-Lopez MF (2005) Simulation of liquid water using semiempirical hamiltonians and the divide and conquer approach. J Phys Chem A 109(15):3425–3432. doi:10.1021/jp0459099

    Article  CAS  Google Scholar 

  36. Bernal-Uruchurtu MI, Janda KC, Hernandez-Lamoneda R (2015) Motion of Br2 molecules in clathrate cages. A computational study of the dynamic effects on its spectroscopic behavior. J Phys Chem A 119(3):452–459. doi:10.1021/jp5082092

    Article  CAS  Google Scholar 

  37. Hammond JR, Govind N, Kowalski K, Austschbach J, Xantheas SS (2009) Accurate dipole polarizabilities for water clusters n = 2–12 at the coupled-cluster level of theory and benchmarking of various density functionals. J Chem Phys 131:214103. doi:10.1063/1.3263604

    Article  Google Scholar 

  38. Sprik M, Hutter J, Parrinello M (1996) Ab initio molecular dynamics simulation of liquid water: comparison of three gradient-corrected density functionals. J Chem Phys 105:1142. doi:10.1063/1.471957

    Article  CAS  Google Scholar 

  39. VandeVondele J, Mohamed F, Krack M, Hutter J, Sprik M, Parrinello M (2005) The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J Chem Phys 122:014515. doi:10.1063/1.1828433

    Article  Google Scholar 

  40. Hernandez-Lamoneda R, Rosas VH, Bernal-Uruchurtu MI, Halberstadt N, Janda KC (2008) Two-dimensional H2O-Cl2 and H2O-Br2 potential surfaces: an ab initio study of ground and valence excited electronic states. J Phys Chem A 112(1):89–96. doi:10.1021/jp077074i

    Article  CAS  Google Scholar 

  41. Franklin-Mergarejo R, Rubayo-Soneira J, Halberstadt N, Ayed T, Bernal-Uruchurtu MI, Hernandez-Lamoneda R, Janda KC (2011) Large shift and small broadening of Br2 valence band upon dimer formation with H2O: an ab initio study. J Phys Chem A 115(23):5983–5991. doi:10.1021/jp110389z

    Article  CAS  Google Scholar 

  42. Pathak AK, Mukherjee T, Maity DK (2008) Microhydration of X2 gas (X = Cl, Br, and I): a theoretical study on X2;nH2O Clusters (n = 1–8). J Phys Chem A 112(4):744–751. doi:10.1021/jp076594a

    Article  CAS  Google Scholar 

  43. Alkorta I, Rozas I, Elguero J (1998) Charge-transfer complexes between dihalogen compounds and electron donors. J Phys Chem A 102(46):9278–9285. doi:10.1021/jp982251o

    Article  CAS  Google Scholar 

  44. Ruiz-López MF (2008) The multipole moment expansion solvent continuum model: a brief review. In: Canuto S (ed) Solvation effects on molecules and biomolecules, vol 6. Challenges and advances in computational chemistry and physics. Springer, Netherlands, pp 23–38. doi:10.1007/978-1-4020-8270-2_2

  45. Tomasi J (1994) Application of continuum solvation models based on a quantum mechanical hamiltonian. Struct React Aqueous Solution 568:10–23. doi:10.1021/bk-1994-0568.ch002

    Article  CAS  Google Scholar 

  46. Cramer CJ, Truhlar DG (2008) A universal approach to solvation modeling. Acc Chem Res 41(6):760–768. doi:10.1021/ar800019z

    Article  CAS  Google Scholar 

  47. Rinaldi D, Bouchy A, Rivail JL, Dillet V (2004) A self-consistent reaction field model of solvation using distributed multipoles. I. Energy and energy derivatives. J Chem Phys 120(5):2343–2350. doi:10.1063/1.1635355

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al (2009) Gaussian 09 Revision C.01. Gaussian, Ing, Wallingford, CT

    Google Scholar 

  49. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124(9):094107. doi:10.1063/1.2173258

    Article  Google Scholar 

  50. Bernal Uruchurtu MI, Ruiz-López MF (2007) Eigen and Zundel ions in aqueous environments. A theoretical study using semi-empirical force fields. In: Hernández-Lamoneda R (ed) Beyond standard quantum chemistry: applications from gas to condensded phases. Transworld Research Network, Kerala, pp 65–85

    Google Scholar 

  51. Serrano-Andres L, Fulscher MP, Karlstrom G (1997) Solvent effects on electronic spectra studied by multiconfigurational perturbation theory. Int J Quantum Chem 65(2):167–181

    Article  CAS  Google Scholar 

  52. Han WG, Liu T, Himo F, Toutchkine A, Bashford D, Hahn KM, Noodleman L (2003) A theoretical study of the UV/visible absorption and emission solvatochromic properties of solvent-sensitive dyes. ChemPhysChem 4(10):1084–1094. doi:10.1002/cphc.200300801

    Article  CAS  Google Scholar 

  53. Kelly CP, Cramer CJ, Truhlar DG (2006) Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A 110(7):2493–2499. doi:10.1021/j055336f

    Article  CAS  Google Scholar 

  54. Korona T, Werner H-J (2003) Local treatment of electron excitations in the EOM-CCSD method. J Chem Phys 118(7):3006–3019. doi:10.1063/1.1537718

    Article  CAS  Google Scholar 

  55. Werner H-J, Knowles PJ, Amos RD, Bernhardsson A, Berning A, et al (2002) Molpro, 3 edn

    Google Scholar 

  56. Pulay P (1983) Localizability of dynamic electron correlation. Chem Phys Lett 100(2):151–154

    Article  CAS  Google Scholar 

  57. Saebo S, Pulay P (1993) Local treatment of electron correlation. Ann Rev Phys Chem 44:213–236

    Article  CAS  Google Scholar 

  58. Werner HJ, Pflüger H-J (2006) Ann Rep Comp Chem 2:53–80

    Article  CAS  Google Scholar 

  59. Hetzer G, Werner HJ (1999) Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys 111:5691–5705. doi:10.1063/1.479957

    Article  Google Scholar 

  60. Werner HJ, Manby FR, Knowles PJ (2003) Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys 118:8149. doi:10.1063/1.1564816

    Article  CAS  Google Scholar 

  61. Polly R, Werner HJ, Manby FR, Knowles PJ (2006) Fast Hartree-Fock theory using local density fitting approximations. Mol Phys 102:2311–2321. doi:10.1080/0026897042000274801

    Article  Google Scholar 

  62. Werner H-J, Pflüger K (2006) Chapter 4 On the selection of domains and orbital pairs in local correlation treatments. In: David CS (ed) Annual reports in computational chemistry, vol 2. Elsevier, Amsterdam. pp 53–80. doi:10.1016/S1574-1400(06)02004-4

  63. Dieterich JM, Werner HJ, Mata RA, Metz S, Thiel W (2010) Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: ab initio and free energy quantum mechanical/molecular mechanical calculations. J Chem Phys 132:035101. doi:10.1063/1.3280164

    Article  Google Scholar 

  64. Schütz M, Rauhut G, Werner HJ (1998) Local treatment of electron correlation in molecular clusters: structures and stabilities of (H2O)n, n = 2-4. J Phys Chem A 102:5997–6003

    Article  Google Scholar 

  65. Runeberg N, Schutz M, Werner HJ (1999) The aurophilic attraction as interpreted by local correlation methods. J Chem Phys 110(15):7210–7215. doi:10.1063/1.478665

    Article  CAS  Google Scholar 

  66. Magnko L, Schweizer M, Rauhut G, Schutz M, Stoll H, Werner HJ (2002) A comparison of metallophilic attraction in (X-M-PH3)(2) (M = Cu, Ag, Au; X = H, Cl). Phys Chem Chem Phys 4(6):1006–1013. doi:10.1039/b110624d

    Article  CAS  Google Scholar 

  67. Kats D, Korona T, Schutz M (2006) Local CC2 electronic excitation energies for large molecules with density fitting. J Chem Phys 125(10):104106. doi:10.1063/1.2339021

    Article  Google Scholar 

  68. Kats D, Schutz M (2009) A multistate local coupled cluster CC2 response method based on the Laplace transform. J Chem Phys 131(12):124117. doi:10.1063/1.3237134

    Article  Google Scholar 

  69. Ponder J (2005) Tinker. 5.1 edn., Washington

    Google Scholar 

Download references

Acknowledgments

Several colleagues have enriched the insight gained up to now in this subject; we would like to thank A. Apkarian, N. Halberstadt, K. C. Janda, O. Roncero and M. F. Ruiz-López for many valuable comments and discussions. This work has been funded by CONACYT 79975 and 128065. AAT and FABR gratefully acknowledges scholarships from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Bernal-Uruchurtu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bernal-Uruchurtu, M.I., Alcaraz Torres, A., Batista Romero, F.A., Hernández-Lamoneda, R. (2015). Towards an Accurate Model for Halogens in Aqueous Solutions. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_9

Download citation

Publish with us

Policies and ethics