Skip to main content
Log in

Complex excited dynamics around a plateau on a retinal-like potential surface: chaos, multi-exponential decays and quantum/classical differences

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We investigate the classical and quantum dynamics on the plateau of an excited potential energy surface (PES) whose shape mimics the PES driving the photoisomerization of the protonated Schiff base of retinal (PSBR). We adopt a two-dimensional analytical model of the PES, and perform an extended study by varying the potential parameters, revealing a scenario whose interest goes beyond the relevance for the specific case of PSBR. In fact, we document cases with net differences among classical and quantum dynamical predictions, for barrierless PESs. Classical trajectories released on the PES display the signature of chaos and partial trapping on the plateau, whose origin is purely dynamical, since no barrier exists. At variance, on the same barrierless PESs, quantum dynamics does not predict any trapping, always showing a complete depletion of the excited population according to an approximate mono-exponential law. The plateau on the PES promotes complex and unusual dynamical features, and it is sufficient to introduce a very small barrier along the cistrans torsional mode to give rise to a multi-exponential decay, also at quantum level. Our results are of general interest because plateaux are often found in the excited states of conjugated chromophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997). J Am Chem Soc 119:6891

    Article  CAS  Google Scholar 

  2. Garavelli M, Vreven T, Celani P, Bernardi F, Robb MAM, Olivucci M (1998). J Am Chem Soc 120:1285

    Article  CAS  Google Scholar 

  3. Gonzalez-Luque R, Garavelli M, Bernardi F, Merchan M, Robb MA, Olivucci M (2000). Proc Natl Acad Sci USA 97:9379

    Article  CAS  Google Scholar 

  4. Improta R, Santoro F (2005). J Chem Theor Comp 1:215

    Article  CAS  Google Scholar 

  5. Migani A, Robb MA, Olivucci M (2003). J Am Chem Soc 125:2804

    Article  CAS  Google Scholar 

  6. Hunt PA, Robb MA (2005). J Am Chem Soc 127:5720

    Article  CAS  Google Scholar 

  7. Nangia S, Truhlar DJ (2006). J Chem Phys 124:124309

    Article  Google Scholar 

  8. Olivucci M, Lami A, Santoro F (2005). Angew Chem Int Ed 44:5118

    Article  CAS  Google Scholar 

  9. Hamm P, Zurek M, Röschinger T, Patzelt H, Oesterhelt D, Zinth W (1996). Chem Phys Lett 263:613

    Article  CAS  Google Scholar 

  10. Logunov SL, Song L, El-Sayed M (1996). J Phys Chem 100:18586

    Article  CAS  Google Scholar 

  11. Yan M, Rothberg L, Callender R (2001). J Phys Chem B 105:856

    Article  CAS  Google Scholar 

  12. Kandori H, Furutani Y, Nishimura S, Shichida Y, Chosrowjan H, Shibata Y, Mataga N (2001). Chem Phys Lett 334:271

    Article  CAS  Google Scholar 

  13. Schenkl S, Portuondo E, Zgrablic G, Chergui M, Haacke S, Friedman N, Sheves M (2002). Phys Chem Chem Phys 4:5020

    Article  CAS  Google Scholar 

  14. Zhong Q, Ruhman S, Ottolenghi M (1996). J Am Chem Soc 118:12828

    Article  CAS  Google Scholar 

  15. Hou B, Friedman N, Ruhman S, Sheves M, Ottolenghi M (2001). J Phys Chem B 105:7042

    Article  CAS  Google Scholar 

  16. Song L, El-Sayed MA (1998). J Am Chem Soc 120:8889

    Article  CAS  Google Scholar 

  17. Haran G, Morlino EA, Matthes J, Callander RH, Hochstrasser RM (1999). J Phys Chem A 103:2202

    Article  CAS  Google Scholar 

  18. Haacke S, Vinzani S, Schenkl S, Chergui M (2001). Chem Phys Chem 2:310

    CAS  Google Scholar 

  19. Kobayashi T, Saito T, Ohtani H (2001). Nature 414:531

    Article  CAS  Google Scholar 

  20. Cembran A, Bernardi F, Olivucci M, Garavelli M (2003). J Am Chem Soc 125:12509

    Article  Google Scholar 

  21. Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005). Science 310:1006

    Article  CAS  Google Scholar 

  22. Kosloff R (1996) In: A Dynamics of molecules and chemical reactions. Wyatt RE, Zhang JZH (eds) Marcel Dekker, Inc., New York.

  23. Lanczos C (1950). Res Nat Bur Stand 45:225

    Google Scholar 

  24. Ferretti A, Granucci G, Lami A, Persico M, Villani G (1996). J Chem Phys 104:5517

    Article  CAS  Google Scholar 

  25. Gray SK, Balint-Kuri GG (1997). J Chem Phys 108:950

    Article  Google Scholar 

  26. Benettin G, Galgani L, Strelcyn J-M (1976). Phys Rev A 14:2238

    Article  Google Scholar 

  27. Balzer B, Dithley S, Stock G, Thoss M (2003). J Chem Phys 119:5795

    Article  CAS  Google Scholar 

  28. Balzer B, Dithley S, Hahn S, Thoss M, Stock G (2003). J Chem Phys 119:4204

    Article  CAS  Google Scholar 

  29. Sun X, Wang H, Miller WH (1998). J Chem Phys 109:7064

    Article  CAS  Google Scholar 

  30. Wang H, Sun X, Miller WH (1998). J Chem Phy 108:9726

    Article  CAS  Google Scholar 

  31. Davies MJ, Heller EJ (1981). J Chem Phys 75:246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Olivucci.

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1 (DOC 1,929KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoro, F., Lami, A. & Olivucci, M. Complex excited dynamics around a plateau on a retinal-like potential surface: chaos, multi-exponential decays and quantum/classical differences. Theor Chem Account 117, 1061–1072 (2007). https://doi.org/10.1007/s00214-006-0220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0220-3

Keywords

Navigation