Skip to main content
Log in

Light driven molecular switches: exploring and tuning their photophysical and photochemical properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In recent years, computational photochemistry has become a valid tool for the investigation of photophysical properties and photochemical reaction mechanisms in organic chromophores. Theoretical chemists can now adapt their tools to the subject under investigation and to the type and accuracy of the desired information. Different computational strategies can now be adopted to characterize different aspects of the photoinduced molecular reactivity of a given chromophore and to provide, in principle, a quite detailed description of the reactive process from energy absorption to photoproducts formation. The basic aim is to establish a correlation between the structure of the molecule and its photochemical outcome, and, in particular, to assess the effect of modifications of the chromophore and of the molecular environment. In this perspective, recent advances and applications of photoinduced cis \(\rightleftarrows\) trans isomerizations involving some organic chromophores active in biologically or technologically relevant problems is reviewed here and discussed in the light of new results. In particular, the photochemistry of azobenzene, retinals and of the green fluorescent protein chromophore is considered, taking into account structural changes and environment effects. The results presented in this work are intended to be the first step toward the design of chromophores that can act as molecular photoswitches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drexler KE (1986). Engines of creation: the coming era of nanotechnology. Anchor Books Editions, USA

    Google Scholar 

  2. Dugave C, Demange L (2003). Chem Rev 103:2475

    CAS  Google Scholar 

  3. Tamai N, Miyasaka H (2000). Chem Rev 100:1875–1890

    CAS  Google Scholar 

  4. Yokoyama Y (2000). Chem Rev 1000:1717–1739

    Google Scholar 

  5. Irie M (2000). Chem Rev 100:1685–1716

    CAS  Google Scholar 

  6. Fuss W, Lochbrunner S, Muller AM, Schikarski T, Schmid WE, Trushin SA (1998). Chem Phys 232:161–174

    CAS  Google Scholar 

  7. Gonzalez-Luque R, Garavelli M, Bernardi F, Merchan M, Robb MA, Olivucci M (2000). Proce Nat Acad Sci USA 97:9379–9384

    CAS  Google Scholar 

  8. Truhlar DG, Gordon MS (1990). Science 249:491

    CAS  Google Scholar 

  9. Ciminelli C, Granucci G, Persico M (2004). Chem Eur J 10:2327–2341

    CAS  Google Scholar 

  10. Toniolo A, Ciminelli C, Persico M, Martinez TJ (2005). J Chem Phys 123:234308

    CAS  Google Scholar 

  11. Fuss W, Kompa KL, Lochbrunner S, Muller AM (1997). Chem Phys Physi Chem 101:500–509

    CAS  Google Scholar 

  12. Natansohn A, Rochon P (2002). Chem Rev 102:4139

    CAS  Google Scholar 

  13. Hampp N (2000). Chem Rev 100:1755

    CAS  Google Scholar 

  14. Garavelli M, Celani P, Fato M, Bearpark MJ, Smith BR, Olivucci M, Robb MA (1997). J Phys Chem A 101:2023–2032

    CAS  Google Scholar 

  15. Celani P, Robb MA, Garavelli M, Bernardi F, Olivucci M (1995). Chem Phys Lett 243:1–8

    CAS  Google Scholar 

  16. Bearpark MJ, Robb MA, Schlegel HB (1994). Chem Phys Lett 223:269–274

    CAS  Google Scholar 

  17. Gonzalez C, Schlegel HB (1990). J Phys Chem 94:5523

    CAS  Google Scholar 

  18. Cembran A, Bernardi F, Garavelli M, Gagliardi L, Orlandi G (2004). J Am Chem Soc 126:3234–3243

    CAS  Google Scholar 

  19. Altoe P, Bernardi F, Garavelli M, Orlandi G, Negri F (2005). J Am Chem Soc 127:3952–3963

    CAS  Google Scholar 

  20. Andersson K, Malmqvist P-Å, Roos BO (1992). J Chem Phys 96:1218

    CAS  Google Scholar 

  21. McDouall JJW, Peasley K, Robb MA (1988). Chem Phys Lett 148:183–189

    CAS  Google Scholar 

  22. Roos BO (1980). Int J Quant Chem 14:175

    CAS  Google Scholar 

  23. Roos BO, Taylor PR, Siegbahn PEM (1980). Chem Phys 48:157

    CAS  Google Scholar 

  24. Roos BO (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry - II Wiley, New York, p. 399–446

  25. Siegbahn PEM, Almlof J, Heiberg A, Roos BO (1981). J Chem Phys 74:2384

    CAS  Google Scholar 

  26. Bernardi F, Olivucci M, Robb MA (1996). Chem Soc Rev 25:321

    CAS  Google Scholar 

  27. Cossi M, Barone V, Cammi R, Tomasi J (1996). Chem Phys Lett 255:327–335

    CAS  Google Scholar 

  28. Mennucci B, Tomasi J (1997). J Chem Phys 106:5151–5158

    CAS  Google Scholar 

  29. Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002). Phys Chem Chem Phys 4:5697–5712

    CAS  Google Scholar 

  30. Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ (2006). J Chem Theory Comput 2:815–826

    CAS  Google Scholar 

  31. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995). J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  32. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004). J Comput Chem 25:1157–1174

    CAS  Google Scholar 

  33. Fischer E, Malkin S (1962). J Phys Chem 66:2482

    Google Scholar 

  34. Rau H, Luddeke E (1982). J Am Chem Soc 104:1616

    CAS  Google Scholar 

  35. Rau H, (1990) In: Dürr H, Bounas-Laurent H (eds) Photocromism, molecules and systems. Elsevier, Amsterdam, p. 165–192

  36. Fujino T, Arzhantsev SY, Tahara T (2001). J Phys Chem A 105:8123–8129

    CAS  Google Scholar 

  37. Bortolus P, Monti S (1979). J Phys Chem 83:648

    CAS  Google Scholar 

  38. Siampiringue N, Guyot G, Bortolus P, Monti S (1987) 37:185

  39. Cattaneo P, Persico M (1999). Phys Chem Chem Phys 1:4739

    CAS  Google Scholar 

  40. Ishikawa T, Noro T, Shoda T (2001). J Chem Phys 115:7503

    CAS  Google Scholar 

  41. Gagliardi L, Orlandi G, Bernardi F, Cembran A, Garavelli M (2004). Theor Chem Acc 111:363–372

    CAS  Google Scholar 

  42. Diau EWG (2004). J Phys Chem A 108:950–956

    CAS  Google Scholar 

  43. Birks JB (1970). Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  44. Kubo R, Toyozawa Y (1955). Prog Theor Phys 13:160–182

    Google Scholar 

  45. Brown EV, Grunneman GR (1975). J Am Chem Soc 97:621

    CAS  Google Scholar 

  46. Lednev I, Ye TQ, Matousek P, Townie M, Foggi P, Neuwahl F, Umapathy S, Moore J (1998). Chem Phys Lett 290:68

    CAS  Google Scholar 

  47. Pierloot K, Dumez B, Widmark P-O, Roos BO (1995). Theor Chim Acta 90:87

    CAS  Google Scholar 

  48. Kandori H, Shichida Y, Yoshizawa T (2001). Biochem Mosc 66:1197–1209

    CAS  Google Scholar 

  49. Needleman R (1995) In: Horspool WM, Song P-S (eds) CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, p. 1508–1515

  50. Ottolenghi M, Sheves M (1995). Isr J Chem 35:U3–U3

    Google Scholar 

  51. Wald G, (1968). Science 162:230–239

    CAS  Google Scholar 

  52. Mathies R, Lugtenburg J (2000) In: Stavenga DG, DeGrip WJ, Pugh ENJ (eds) Molecular mechanism of vision. Elsevier, New York p. 55–90

  53. Yoshizawa T, Kuwata O (1995) In: Horspool WM, Song P-S (eds) CRC handbook of organic photochemistry and photobiology. CRC Press, Boca Raton, p. 1493–1499

  54. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997). J Am Chem Soc 119:6891–6901

    CAS  Google Scholar 

  55. Garavelli M, Bernardi F, Olivucci M, Vreven T, Klein S, Celani P, Robb MA (1998). Faraday Discuss 110:51–70

    CAS  Google Scholar 

  56. Garavelli M, Vreven T, Celani P, Bernardi F, Robb MA, Olivucci M (1998). J Am Chem Soc 120:1285–1288

    CAS  Google Scholar 

  57. De Vico L, Page CS, Garavelli M, Bernardi F, Basosi R, Olivucci M (2002). J Am Chem Soc 124:4124–4134

    CAS  Google Scholar 

  58. Ruhman S, Hou BX, Friedman N, Ottolenghi M, Sheves M (2002). J Am Chem Soc 124:8854–8858

    CAS  Google Scholar 

  59. Garavelli M, Bernardi F, Celani P, Robb MA, Olivucci M (1998). J Photochem Photobiolo Chem 114:109–116

    CAS  Google Scholar 

  60. Garavelli M, Negri F, Olivucci M (1999). J Am Chem Soc 121:1023–1029

    CAS  Google Scholar 

  61. Cembran A, Bernardi F, Olivucci M, Garavelli M (2003). J Am Chem Soc 125:12509–12519

    Google Scholar 

  62. Albeck A, Livnah N, Gottlieb H, Sheves M (1992). J Am Chem Soc 114:2400

    CAS  Google Scholar 

  63. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001). Biochem 40:7761–7772

    CAS  Google Scholar 

  64. Kobayashi T, Saito T, Ohtani H (2001). Nature 414:531–534

    CAS  Google Scholar 

  65. Hou B, Friedman N, Ruhman S, Sheves M, Ottolenghi M (2001). J Phys Chem B 105:7042–7048

    CAS  Google Scholar 

  66. Haran G, Morlino EA, Matthes J, Callender RH, Hochstrasser RM (1999). J Phys Chem A 103:2202–2207

    CAS  Google Scholar 

  67. Logunov SL, Volkov VV, Braun M, El-Sayed MA (2001). Proce Nat Acad Sci USA 98:8475–8479

    CAS  Google Scholar 

  68. Kandori H, Furutani Y, Nishimura S, Shichida Y, Chosrowjan H, Shibata Y, Mataga N (2001). Chem Phys Lett 334:271–276

    CAS  Google Scholar 

  69. Weiss RM, Warshel A (1979). J Am Chem Soc 101:6131–6133

    CAS  Google Scholar 

  70. Sheves M, Kohne B, Mazur J (1983). J Chem Soc Chem Commun 1232–1234

  71. Sheves M, Nakanishi K, Honig B (1979). J Am Chem Soc 101:7086–7088

    CAS  Google Scholar 

  72. Nakanishi K, Balogh-Nair V, Arnaboldi M, Tsujimoto K, Honig B (1980). J Am Chem Soc 102:7945–7947

    CAS  Google Scholar 

  73. Motto MG, Sheves M, Tsujimoto K, Balogh-Nair V, Nakanishi K (1980). J Am Chem Soc 102:7947–7949

    CAS  Google Scholar 

  74. Honig B, Dinur U, Nakanishi K, Balogh-Nair V, Gawinowicz MA, Arnaboldi M, Motto MG (1979). J Am Chem Soc 101:7084–7086

    CAS  Google Scholar 

  75. Honig B, Greenberg AD, Dinur U, Ebrey TG (1976). Biochem 4593

  76. Birge RR, Hubbard LM (1980). J Am Chem Soc 102:2195–2205

    CAS  Google Scholar 

  77. Michl J, Bonacic-Koutecky V (1990). Electronic aspects of organic photochemistry. J Wiley, New York

    Google Scholar 

  78. Bonacic-Koutecky V, Koutecky J, Michl J (1987). Angew Chem Inte Edi 26:170–189

    Google Scholar 

  79. Cembran A, Bernardi F, Olivucci M, Garavelli M (2004). J Am Chem Soc 126:16018–16037

    CAS  Google Scholar 

  80. Fuss W, Haas Y, Zilberg S (2000). Chem Phys 259:273–295

    CAS  Google Scholar 

  81. Strodel P, Tavan PJ (2002). Chem Phys 117:4677

    CAS  Google Scholar 

  82. Nakayama K, Nakano H, Hirao K (1998). Int J Quant Chem 66:157

    CAS  Google Scholar 

  83. Hudson BS, Kohler BE, Schulten K (1982). Excited states. Academic Press, New York, pp. 1–99

    Google Scholar 

  84. Klessinger M, Michl J (1994). Excited states and photochemistry of organic molecules. VCH, New York

    Google Scholar 

  85. Celani P, Garavelli M, Ottani S, Bernardi F, Robb MA, Olivucci M (1995). J Am Chem Soc 117:11584–11585

    CAS  Google Scholar 

  86. Robb MA, Garavelli M, Olivucci M, Bernardi F (2000). Rev Comput Chem 15:87–146

    CAS  Google Scholar 

  87. Garavelli M, Smith BR, Bearpark MJ, Bernardi F, Olivucci M, Robb MA (2000). J Am Chem Soc 122:5568–5581

    CAS  Google Scholar 

  88. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997). J Am Chem Soc 119:11487–11494

    CAS  Google Scholar 

  89. Garavelli M, Frabboni B, Fato M, Celani P, Bernardi F, Robb MA, Olivucci M (1999). J Am Chem Soc 121:1537–1545

    CAS  Google Scholar 

  90. Garavelli M, Page CS, Celani P, Olivucci M, Schmid WE, Trushin SA, Fuss W (2001). J Phys Chem A 105:4458– 4469

    CAS  Google Scholar 

  91. Garavelli M, Bernardi F, Olivucci M, Bearpark MJ, Klein S, Robb MA (2001). J Phys Chem A 105:11496–11504

    CAS  Google Scholar 

  92. Wald G, Brown PK (1958). Science 127:222

    CAS  Google Scholar 

  93. Rehorek M, Heyn MP (1979). Biochemistry 18:4977

    CAS  Google Scholar 

  94. Freedman KA, Becker RS (1986). J Am Chem Soc 108:1245–1251

    CAS  Google Scholar 

  95. Bachilo SM, Bondarev SL, Gillbro T (1996). J Photochem Photobiolo B Biology 34:39–46

    CAS  Google Scholar 

  96. Hamm P, Zurek M, Roschinger T, Patzelt H, Oesterhelt D, Zinth W (1996). Chem Phys Lett 263:613–621

    CAS  Google Scholar 

  97. Kandori H, Sasabe H, Nakanishi K, Yoshizawa T, Mizukami T, Shichida Y (1996). J Am Chem Soc 118:1002–1005

    CAS  Google Scholar 

  98. Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1991). Science 254:412–415

    CAS  Google Scholar 

  99. Mathies RA, Cruz CHB, Pollard WT, Shank CV (1988). Science 240:777–779

    CAS  Google Scholar 

  100. Dartnall HJA (1967). Vis Res 8:339–358

    Google Scholar 

  101. Logunov SL, Song L, ElSayed MA (1996). J Phys Chem 100:18586–18591

    CAS  Google Scholar 

  102. Kandori H, Katsuta Y, Ito M, Sasabe H (1995). J Am Chem Soc 117:2669–2670

    CAS  Google Scholar 

  103. Becker RS, Freedman KA (1985). J Am Chem Soc 107:1477–1485

    CAS  Google Scholar 

  104. Koyama Y, Kubo K, Komori M, Yasuda H, Mukai Y (1991). Photochem Photobiolo 54:433–443

    CAS  Google Scholar 

  105. Pu JZ, Gao JL, Truhlar DG (2004). J Phys Chem A 108:632–650

    CAS  Google Scholar 

  106. Gao JL, Truhlar DG (2002). Ann Rev Phys Chem 53:467–505

    CAS  Google Scholar 

  107. Mo YR, Alhambra G, Gao JL (2000). Acta Chimi Sin 58:1504–1510

    CAS  Google Scholar 

  108. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996). Science 273:1392–1395

    CAS  Google Scholar 

  109. Chattoraj M, King BA, Bublitz GU, Boxer SG (1996). Proc Natl Acad Sci USA 93:8362–8367

    CAS  Google Scholar 

  110. He XA, Bell AF, Tonge PJ (2002). J Phys Chem B 106:6056–6066

    CAS  Google Scholar 

  111. Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI (1996). Proc Natl Acad Sci USA 93:13617–13622

    CAS  Google Scholar 

  112. Bell AF, He X, Wachter RM, Tonge PJ (2000). Biochemistry 39:4423–4431

    CAS  Google Scholar 

  113. Schellenberg P, Johnson E, Esposito AP, Reid PJ, Parson WW (2001). J Phys Chem B 105:5316–5322

    CAS  Google Scholar 

  114. Esposito AP, Schellenberg P, Parson WW, Reid PJ (2001). J Mol Struct 569:25–41

    CAS  Google Scholar 

  115. Negri F, Zgierski MZ (1992). J Chem Phys 97:7124–7136

    CAS  Google Scholar 

  116. Negri F, Zgierski MZ (1993). J Chem Phys 99:4318–4326

    CAS  Google Scholar 

  117. Negri F, Orlandi G (1997). J Photoch Photobio A 105:209–216

    CAS  Google Scholar 

  118. Negri F, Orlandi G (1995). J Chem Phys 103:2412–2419

    CAS  Google Scholar 

  119. Negri F, Orlandi G (2005) In: Olivucci M (ed) Computational photochemistry. Elsevier, Amsterdam, p. 129–169

  120. Sinicropi A, Andruniow T, Ferre N, Basosi R, Olivucci M (2005). J Am Chem Soc 127:11534–11535

    CAS  Google Scholar 

  121. Bublitz G, King BA, Boxer SG (1998). J Am Chem Soc 120:9370–9371

    CAS  Google Scholar 

  122. Creemers TMH, Lock AJ, Subramaniam V, Jovin TM, Volker S (1999). Nature Struct Biol 6:557–560

    CAS  Google Scholar 

  123. Martin ME, Negri F, Olivucci M (2004). J Am Chem Soc 126:5452–5464

    CAS  Google Scholar 

  124. He X, Bell AF, Tonge PJ (2003). FEBS Lett 549:35–38

    CAS  Google Scholar 

  125. Garavelli M, Bernardi F, Robb MA, Olivucci M (2002). Int J Photoenergy 4:57–68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizia Negri.

Additional information

F. Bernardi deceased on 20th February 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altoè, P., Bernardi, F., Conti, I. et al. Light driven molecular switches: exploring and tuning their photophysical and photochemical properties. Theor Chem Account 117, 1041–1059 (2007). https://doi.org/10.1007/s00214-006-0219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0219-9

Keywords

Navigation