Skip to main content
Log in

Dysregulations of amino acid metabolism and lipid metabolism in urine of children and adolescents with major depressive disorder: a case-control study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The mechanisms underlying major depressive disorder (MDD) in children and adolescents are unclear. Metabolomics has been utilized to capture metabolic signatures of various psychiatric disorders; however, urinary metabolic profile of MDD in children and adolescents has not been studied.

Objectives

We analyzed urinary metabolites in children and adolescents with MDD to identify potential biomarkers and metabolic signatures.

Methods

Here, liquid chromatography-mass spectrometry was used to profile metabolites in urine samples from 192 subjects, comprising 80 individuals with antidepressant-naïve MDD (AN-MDD), 37 with antidepressant-treated MDD (AT-MDD) and 75 healthy controls (HC). We performed orthogonal partial least squares discriminant analysis to identify differential metabolites and employed logistic regression and receiver operating characteristic analysis to establish a diagnostic panel.

Results

In total, 143 and 71 differential metabolites were identified in AN-MDD and AT-MDD, respectively. These were primarily linked to lipid metabolism, molecular transport, and small molecule biochemistry. AN-MDD additionally exhibited dysregulated amino acid metabolism. Compared to HC, a diagnostic panel of seven metabolites displayed area under the receiver operating characteristic curves of 0.792 for AN-MDD, 0.828 for AT-MDD, and 0.799 for all MDD. Furthermore, the urinary metabolic profiles of children and adolescents with MDD significantly differed from those of adult MDD.

Conclusions

Our research suggests dysregulated amino acid metabolism and lipid metabolism in the urine of children and adolescents with MDD, similar to results in plasma metabolomics studies. This contributes to the comprehension of mechanisms underlying children and adolescents with MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Shweiki MR, Oeckl P, Steinacker P, Hengerer B, Schönfeldt-Lecuona C, Otto M (2017) Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies. Expert Rev Proteomics 14:499–514

    Article  CAS  PubMed  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19

    Article  CAS  PubMed  Google Scholar 

  • Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PLoS ONE 8:e73076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de Girolamo G, de Graaf R, Demyttenaere K, Hu C, Iwata N, Karam AN, Kaur J, Kostyuchenko S, Lépine JP, Levinson D, Matschinger H, Mora ME, Browne MO, Posada-Villa J, Viana MC, Williams DR, Kessler RC (2011) Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Liu Z, Fan SH, Yang DY, Zheng P, Shao WH, Qi ZG, Xu XJ, Li Q, Mu J, Yang YT, Xie P (2014) Combined application of NMR- and GC-MS-based metabonomics yields a superior urinary biomarker panel for bipolar disorder. Sci Rep 4:5855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Xie J, Li WW, Bai SJ, Wang W, Zheng P, Xie P (2019a) Age-specific urinary metabolite signatures and functions in patients with major depressive disorder. Aging (Albany N Y) 11:6626–6637

    CAS  Google Scholar 

  • Chen JJ, Xie J, Zeng L, Zhou CJ, Zheng P, Xie P (2019b) Urinary metabolite signature in bipolar disorder patients during depressive episode. Aging (Albany N Y) 11:1008–1018

    CAS  Google Scholar 

  • Chen DT, Cheng SW, Chen T, Chang JP, Hwang BF, Chang HH, Chuang EY, Chen CH, Su KP (2022) Identification of genetic variations in the NAD-related pathways for patients with major depressive disorder: a case-control study in Taiwan. J Clin Med 11(13):3622. https://doi.org/10.3390/jcm11133622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings CM, Caporino NE, Kendall PC (2014) Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychol Bull 140:816–845

    Article  PubMed  Google Scholar 

  • de Villiers M, Macuamule C, Spry C, Hyun YM, Strauss E, Saliba KJ (2013) Structural modification of pantothenamides counteracts degradation by pantetheinase and improves antiplasmodial activity. ACS Med Chem Lett 4:784–789

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Gao X, Meng M, Xue H, Qin X (2020) Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix. J Ethnopharmacol 256:112806

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, van Ommen B, Lindon JC, Sansone SA (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178

    Article  CAS  Google Scholar 

  • Francklyn CS, Mullen P (2019) Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 294:5365–5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevi F, Zolla L, Gabriele S, Persico AM (2016) Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 7:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Hankin BL, Young JF, Abela JR, Smolen A, Jenness JL, Gulley LD, Technow JR, Gottlieb AB, Cohen JR, Oppenheimer CW (2015) Depression from childhood into late adolescence: Influence of gender, development, genetic susceptibility, and peer stress. J Abnorm Psychol 124:803–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawton K, van Heeringen K (2009) Suicide. Lancet 373:1372–1381

    Article  PubMed  Google Scholar 

  • Hazell P (2002) Depression in children. BMJ 325:229–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199-205

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    Article  CAS  PubMed  Google Scholar 

  • Kessler RC, Bromet EJ (2013) The epidemiology of depression across cultures. Annu Rev Public Health 34:119–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Khamis MM, Adamko DJ, El-Aneed A (2017) Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev 36:115–134

    Article  CAS  PubMed  Google Scholar 

  • Krämer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530

    Article  PubMed  Google Scholar 

  • Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, Zhao J, Zhou J, Xie P, Xu G (2015) Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res 14:2322–2330

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu C, Tian J, Gao X, Li K, Du G, Qin X (2020) Plasma metabolomics of depressed patients and treatment with Xiaoyaosan based on mass spectrometry technique. J Ethnopharmacol 246:112219

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu X, Wang S, Zhao Z, Jian C, Li M, Qin X (2023) Microbiome and metabolome integrally reveal the anti-depression effects of Cistanche deserticola polysaccharides from the perspective of gut homeostasis. Int J Biol Macromol 245:125542

    Article  CAS  PubMed  Google Scholar 

  • Lundervold AJ, Hinshaw SP, Sørensen L, Posserud MB (2016) Co-occurring symptoms of attention deficit hyperactivity disorder (ADHD) in a population-based sample of adolescents screened for depression. BMC Psychiatry 16:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma WN, Zhou MM, Gou XJ, Zhao L, Cen F, Xu Y, Shen HY (2018) Urinary metabolomic study of chlorogenic acid in a rat model of chronic sleep deprivation using gas chromatography-mass spectrometry. Int J Genomics 2018:1361402

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller L, Campo JV (2021) Depression in adolescents. N Engl J Med 385:445–449

    Article  CAS  PubMed  Google Scholar 

  • Mullen S (2018) Major depressive disorder in children and adolescents. Ment Health Clin 8:275–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira S, Ardais AP, Bastos CR, Gazal M, Jansen K, de Mattos SL, da Silva RA, Kaster MP, Lara DR, Ghisleni G (2019) Impact of genetic variations in ADORA2A gene on depression and symptoms: a cross-sectional population-based study. Purinergic Signal 15:37–44

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan A, Gibney MJ, Brennan L (2011) Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr 93:314–321

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques P, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388-w396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu J, Liu Y, Gui S, Tian L, Yu Y, Wang D, Zhong X, Chen W, Chen X, Chen Y, Chen X, Gong X, Liu L, Li W, Wang H, Xie P (2022) Effects of pharmacological treatment on metabolomic alterations in animal models of depression. Transl Psychiatry 12:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regier DA, Narrow WE, Kuhl EA, Kupfer DJ (2009) The conceptual development of DSM-V. Am J Psychiatry 166:645–650

    Article  PubMed  Google Scholar 

  • Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20:353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitz J (2020) The kynurenine pathway: a finger in every pie. Mol Psychiatry 25:131–147

    Article  PubMed  Google Scholar 

  • Shen X, Zhu ZJ (2019) MetFlow: an interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery. Bioinformatics 35:2870–2872

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu ZJ (2019) Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun 10:1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, Barran P (2021) Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 12:1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  • Stringaris A (2017) Editorial: What is depression? J Child Psychol Psychiatry 58:1287–1289

    Article  PubMed  Google Scholar 

  • Thapar A, Collishaw S, Pine DS, Thapar AK (2012) Depression in adolescence. Lancet 379:1056–1067

    Article  PubMed  PubMed Central  Google Scholar 

  • The L (2019) ICD-11. Lancet 393:2275

    Article  Google Scholar 

  • Thor P, Vermandele F, Bailey A, Guscelli E, Loubet-Sartrou L, Dupont S, Calosi P (2022) Ocean acidification causes fundamental changes in the cellular metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic analysis. Sci Rep 12:22223

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckwerth W (2010) Metabolomics: an integral technique in systems biology. Bioanalysis 2:829–836

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2008) Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol 19:482–493

    Article  CAS  Google Scholar 

  • Wishart DS (2019) Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev 99:1819–1875

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608-d617

    Article  CAS  PubMed  Google Scholar 

  • World Health O (2014) Health for the world’s adolescents: a second chance in the second decade: summary. World Health Organization, Geneva

    Google Scholar 

  • World Medical A (2001) World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull WHO 79:373–374

    Google Scholar 

  • Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, Zhao A, Wang P, Yang P, Wu J, Feng G, He L, Jia W, Wan C (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18:67–78

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yu QT, Ge YZ, Zhang WS, Fan Y, Ma CW, Liu Q, Qi LW (2016) Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci Rep 6:39045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, Sun Z, Chen X, Zhang G, Zhang H, Huang Y, Chai T, Duan J, Liang W, Yin B, Lai J, Huang T, Du Y, Zhang P, Jiang J, Xi C, Wu L, Lu J, Mou T, Xu Y, Perry SW, Wong ML, Licinio J, Hu S, Wang G, Xie P (2020) Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv 6(49):eaba8555. https://doi.org/10.1126/sciadv.aba8555

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Chen JJ, Huang T, Wang MJ, Wang Y, Dong MX, Huang YJ, Zhou LK, Xie P (2013) A novel urinary metabolite signature for diagnosing major depressive disorder. J Proteome Res 12:5904–5911

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Fang Z, Xu XJ, Liu ML, Du X, Zhang X, Wang H, Zhou J, Xie P (2016) Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J Affect Disord 195:75–81

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Liu L, Lan X, Cohen D, Zhang Y, Ravindran AV, Yuan S, Zheng P, Coghill D, Yang L, Hetrick SE, Jiang X, Benoliel JJ, Cipriani A, Xie P (2019) Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents. Mol Psychiatry 24:1478–1488

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Luo M, Zhang H, Yin Y, Cai Y, Zhu ZJ (2022) Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat Commun 13:6656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the staff from the Department of Psychiatry and the Health Management Center, the First Affiliated Hospital of Chongqing Medical University (Chongqing, China), for their contributions to subject recruitment and sample collection.

Funding

This research was financially supported by the Major Program of Brain Science and Brain-Like Intelligence Technology (Grant No. 2022ZD0212900 to XZ), the National Natural Science Foundation of China (Grant No. 82271565 to XZ), the institutional funds from the Chongqing Science and Technology Commission (Grant No. cstc2020jcyj-jqX0024 to XZ), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02 to ZZ), Shanghai Key Laboratory of Aging Studies (Grant No. 19DZ2260400 to ZZ), the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (Grant No. GZB20230916 to TT), and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (Grant No. 2023TQ0398 to TT).

Author information

Authors and Affiliations

Authors

Contributions

XZ, ZZ, and YJ designed the research. YJ, TT, XW, XML, YY, XEL, JW, HW, and YH recruited subjects. ZZ, YJ, YC, TT, and BY analyzed the data. XZ, YJ, YC, and TT drafted the manuscript. XZ, and ZZ supervised the project. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Zheng-Jiang Zhu or Xinyu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xinyu Zhou and Zheng-Jiang Zhu jointly supervised this work.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Cai, Y., Teng, T. et al. Dysregulations of amino acid metabolism and lipid metabolism in urine of children and adolescents with major depressive disorder: a case-control study. Psychopharmacology (2024). https://doi.org/10.1007/s00213-024-06590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00213-024-06590-0

Keywords

Navigation