Skip to main content

Advertisement

Log in

Intranasal administration of interleukin-4 ameliorates depression-like behavior and biochemical alterations in mouse submitted to the chronic unpredictable mild stress: modulation of neuroinflammation and oxidative stress

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Physical and psychological stress modulates the hypothalamic pituitary adrenal (HPA) axis, and the redox and inflammatory systems. Impairments in these systems have been extensively reported in major depression (MD) patients. Therefore, our study aimed to investigate the effects of the intranasal administration of interleukin-4 (IL-4) in mice with depressive-like behavior induced by chronic unpredictable mild stress (CUMS) for 28 days. On the 28th day, mice received IL-4 intranasally (1 ng/mouse) or vehicle (sterile saline), and after 30 min, they were submitted to behavioral tests or euthanasia for blood collection and removal of the adrenal glands, axillary lymph nodes, spleen, thymus, prefrontal cortices (PFC), and hippocampi (HC). A single administration of IL-4 reversed CUMS-induced depression-like behavior in the tail suspension test and splash test, without evoking locomotor changes. IL-4 administration reduced the plasma levels of corticosterone and the increased weight of suprarenal glands in stressed mice. Moreover, IL-4 restored the expression of nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor kappa B (NF-kB), interleukin 1 beta (IL-1β), IL-4, brain derived neurotrophic factor (BDNF), and indoleamine 2,3-dioxygenase (IDO) in the PFC and HC and modulated oxidative stress markers in these brain structures in stressed mice. Our results showed for the first time the antidepressant-like effect of IL-4 through the modulation of neuroinflammation and oxidative stress. The potential effect of IL-4 administered intranasally arises as an innovative strategy for MD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abumaria N, Rygula R, Hiemke C, Fuchs E, Havemann-Reinecke U, Rüther E, Flügge G, Arango V, Underwood MD, Gubbi AV et al (2014) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. Eur J Pharmacol 4:1702–1714

    Google Scholar 

  • Aebi H (1984) Oxygen radicals in biological systems. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bahr R, Lopez A, Rey JA (2019) Intranasal esketamine (SpravatoTM) for use in treatment-resistant depression in conjunction with an oral antidepressant. P T 44:340–375

    PubMed  PubMed Central  Google Scholar 

  • Brites D, Fernandes A (2015) Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 9:1–20

    Article  Google Scholar 

  • Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160

    Article  CAS  PubMed  Google Scholar 

  • Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, Cattalini A, Esposito M, Stornaiuolo A, Comi G et al (2008) IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 15:504–515

    Article  CAS  PubMed  Google Scholar 

  • Camargo RG, dos Reis Riccardi DM, Ribeiro HQT, Carnevali LC, de Matos-Neto EM, Enjiu L, Neves RX, Lima JDCC, GalvãoFiguerêdo R, de Alcântara PSM et al (2015) Nf-κbp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients. Nutrients 7:4465–4479

    Article  CAS  PubMed  Google Scholar 

  • Cavaillon J (2001) Pro-versus anti-inflammatory cytokines: myth or reality. Cell Mol Bio 47:695–702

    CAS  Google Scholar 

  • Choi P, Reiser H (1998) IL-4: role in disease and regulation of production. Clin Exp Immunol 113:317–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361:6406

    Article  Google Scholar 

  • Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantzer R (2009) Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am 29:247–264

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) The PyMol Molecular Graphics System. Prot 30:442–454

    Google Scholar 

  • Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J (2010) Regulation of learning and memory by meningeal immunity: A key role for IL-4. J Exp Med 207:1067–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducottet C, Aubert A, Belzung C (2004) Susceptibility to subchronic unpredictable stress is related to individual reactivity to threat stimuli in mouse. Behav Brain Res 155:291–299

    Article  CAS  PubMed  Google Scholar 

  • Felger JC (2019) Role of inflammation in depression and treatment implications. Handbook of Experimental Pharmacology. Springer, New York LLC, pp 255–286

    Google Scholar 

  • Francos-Quijorna I, Amo-Aparicio J, Martinez-Muriana A, López-Vales R (2016) IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia 64:2079–2092

    Article  PubMed  Google Scholar 

  • Gadani SP, Cronk JC, Norris GT, Kipnis J (2012) IL-4 in the brain: a cytokine to remember. J Immunol 189:4213–4219

    Article  CAS  PubMed  Google Scholar 

  • Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299

    Article  CAS  PubMed  Google Scholar 

  • Guest FL, Martins-de-Souza D, Rahmoune H, Bahn S, Guest PC (2013) Os efeitos do estresse na função do eixo hipotalâmico-pituitário-adrenal em indivíduos com esquizofrenia. Rev Psiquiatr Clin 40:20–27

    Article  Google Scholar 

  • Hahn GF, de Oliveira JR, Bock PM (2017) O papel do fator nuclear eritróide 2 relacionado ao fator 2 (Nrf2) no diabetes mellitus. Clin Biol Res 37(3):203–213

    Google Scholar 

  • Han A, Yeo H, Park MJ, Kim SH, Choi HJ, Hong CW, Kwon MS (2015) IL-4/10 prevents stress vulnerability following imipramine discontinuation. J Neuroinflammation 12:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson LR, Fine JM, Svitak AL, Faltesek KA (2013) Intranasal administration of CNS therapeutics to awake mice. J Vis Exp. 1–7.

  • Hashimoto K (2018) Essential role of keap1-Nrf2 signaling in mood disorders: overview and future perspective. Front Pharmacol 9:1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Santoyo A, Tenorio-Barajas AY, Victor-Altuzar V, Vivanco-Cid H, Mendoza-Barrera C (2013) Protein-protein and protein-ligand docking. Protein Eng Technol Appl. 3:63–81

    Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  CAS  PubMed  Google Scholar 

  • Keller LA, Merkel O, Popp A (2021) Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Del Trans Res 12:735–757

    Article  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol 8:6–11

    Article  Google Scholar 

  • Kryst J, Kawalec P, Pilc A (2020) Efficacy and safety of intranasal esketamine for the treatment of major depressive disorder. Expert Opin Pharmacother 21:9–20

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Hutchinson GE, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22(12):488–490

    Article  CAS  PubMed  Google Scholar 

  • LeffGelman P, Mancilla-Herrera I, Flores-Ramos M, Saravia Takashima MF, Cruz Coronel FM, Cruz Fuentes C, Pérez Molina A, Hernández-Ruiz J, Silva-Aguilera FS, Farfan-Labonne B et al (2019) The cytokine profile of women with severe anxiety and depression during pregnancy. BMC Psychiatry 19:1–11

    CAS  Google Scholar 

  • Liebert MA (2005) By Oxidative Stress. Stress Int J Biol Stress 7:1664–1673

    Google Scholar 

  • Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin JP, Mankhetkorn S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 72:323–331

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Maddock C, Pariante CM (2001) How does stress affect you? An overview of stress, immunity, depression and disease. Epidemiol Psichiatr Soc 10:153–162

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the epinephrine and a simple assay for superoxide dismutase * autoxidation of. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  • Morikawa O, Sakai N, Obara H, Saito N (1998) Effects of interferon-alpha, interferon-gamma and cAMP on the transcriptional regulation of the serotonin transporter. Eur J Pharmacol 349:317–324

    Article  CAS  PubMed  Google Scholar 

  • Mössner R, Heils A, Stöber G, Okladnova O, Daniel S, Lesch KP (1998) Enhancement of serotonin transporter function by tumor necrosis factor alpha but not by interleukin-6. Neurochem Int 33:251–254

    Article  PubMed  Google Scholar 

  • Mössner R, Daniel S, Schmitt A, Albert D, Lesch KP (2001) Modulation of serotonin transporter function by interleukin-4. Life Sci 68:873–880

    Article  PubMed  Google Scholar 

  • Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Methods Enzymol 233:240–250

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mouse. Mol Psychiatry 14:511–522

    Article  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM (2006) The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol 20:79–84

    Article  PubMed  Google Scholar 

  • Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Pearce BD, Pisell TL et al (1999) The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology 140:4359–4366

    Article  CAS  PubMed  Google Scholar 

  • Rosmond R, Bjorntorp P (2000) The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med 247:188–197

    Article  CAS  PubMed  Google Scholar 

  • Rossetti AC, Paladini MS, Trepci A, Mallien A, Riva MA, Gass P, Molteni R (2019) Differential neuroinflammatory response in male and female mouse: a role for BDNF. Front Mol Neurosci 12:1–14

    Article  Google Scholar 

  • Sangomla S, Saifi MA, Khurana A, Godugu C (2018) Nanoceria ameliorates doxorubicin induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol 47:53–62

    Article  CAS  PubMed  Google Scholar 

  • Sarjan HN, Yajurvedi HN (2019) Duration dependent effect of chronic stress on primary and secondary lymphoid organs and their reversibility in rats. Immunobiology 224:133–141

    Article  Google Scholar 

  • Shah M, Zaneb H, Masood S, Khan I, Sikandar A, Ashraf S, Rehman HF, Usman MM, Khan FA, Amanullah H et al (2018) Effect of zinc and probiotics supplementation on performance and immune organs morphology in heat stressed broilers. South African J Anim Sci 48:1017–1025

    CAS  Google Scholar 

  • Song Y, Sun R, Ji Z, Li X, Fu Q, Ma S (2018) Perilla aldehyde attenuates CUMS-induced depressive-like behaviors via regulating TXNIP/TRX/NLRP3 pathway in rats. Life Sci 206:117–124

    Article  CAS  PubMed  Google Scholar 

  • Sowa-Kućma M, Styczeń K, Siwek M, Misztak P, Nowak RJ, Dudek D, Rybakowski JK, Nowak G, Maes M (2018) Lipid peroxidation and immune biomarkers are associated with major depression and its phenotypes, including treatment-resistant depression and melancholia. Neurotox Res 33:448–460

    Article  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mouse. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Tsai MC, Huang TL (2015) Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder. Psychiatry Res 235:38–42

    Article  PubMed  Google Scholar 

  • Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Vogelaar CF, Shibajee Mandal SL, Birkner K, Birkenstock J, Bühler U, Schnatz A, Raine CS, Bittner S, Vogt J, Kipnis J, Nitsch R et al (2018) Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Sci Transl Med 10:1–13

    Article  Google Scholar 

  • Wachholz S, Knorr A, Mengert L, Plümper J, Sommer R, Juckel G, Friebe A (2017) Interleukin-4 is a participant in the regulation of depressive-like behavior. Behav Brain Res 326:165–172

    Article  CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2017) Depression and other common mental disorders: global health estimates. World Health Organization 1–24. https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf. Accessed 22 Dec 2022

  • Zenker N, Bernstein D (1958) The estimation of small amounts of corticosterone in rat plasma. J Biol Chem 231:695–701

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J (2015) Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 35:11281–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

TAS developed the design and writing of the project, participated in the experiments, and wrote the manuscript; AMC helped in the design and writing of the project and manuscript, and participated in the experiments; DAL helped with the experiments and writing the manuscript. FSS, FKS, and TC provided help for the biochemical analysis; RW and LSP provided help for the in silico analysis; DA participated in the writing of the manuscript; LS is the project supervisor. All authors provide critical feedback for the manuscript conceptualization.

Corresponding author

Correspondence to Lucielli Savegnago.

Ethics declarations

Ethics approval

All institutional and national guidelines for the care and use of laboratory animals were followed. All procedures were approved by the Committee on the Care and Use of Experimental Animal Resources at the Federal University of Pelotas, Brazil (38715), and comply with The Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines, items 5 to 13 (Kilkenny et al. 2010).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaniotto, T.Â., Casaril, A.M., de Andrade Lourenço, D. et al. Intranasal administration of interleukin-4 ameliorates depression-like behavior and biochemical alterations in mouse submitted to the chronic unpredictable mild stress: modulation of neuroinflammation and oxidative stress. Psychopharmacology 240, 935–950 (2023). https://doi.org/10.1007/s00213-023-06336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06336-4

Keywords

Navigation