Skip to main content
Log in

Rrn3 gene knockout affects ethanol-induced locomotion in adult heterozygous zebrafish

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Genome-wide analysis has identified the transcription factor, RRN3 (or TIF-1A), on human chromosome 16p13.11 as a candidate gene associated with mental disorders. Both genetic and biochemical experiments have demonstrated that RRN3 plays a major role in the transcriptional regulation of ribosomal DNA and cell growth. Previous research has suggested that loss of RRN3 from mature neurons reproduces the chronic nature of neurodegenerative processes. Here, we report the first generation and characterization of rrn3 mutant zebrafish in larval and adult stages using the CRISPR/Cas9 genome editing technique. Homozygous knockout zebrafish exhibited morphological changes, such as pericardial oedema and deformed heads, and died at the larval stage of embryonic development. Behaviourally, the locomotion and shoaling behaviour of adult rrn3+/− zebrafish was not significantly different compared with rrn3+/+ zebrafish. Notably, rrn3+/− zebrafish demonstrated abnormal locomotor activity in response to ethanol. We found decreased norepinephrine expression in the brains of rrn3+/− zebrafish when treated with ethanol. In summary, our results indicated that rrn3 was closely associated with early embryonic development in zebrafish. Furthermore, behavioural and neurochemical research revealed the importance of genetic differences in drug sensitivity. The results suggest that caution should be taken when treating RRN3 heterozygous patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNVs:

Copy number variations

NE:

Norepinephrine

WISH:

Whole-mount in situ hybridization

dpf:

Days post-fertilization

mpf:

Months post-fertilization

gRNA:

Guide RNA

RT-qPCR:

Real-time quantitative polymerase chain reaction

HPLC:

High-precision liquid chromatography

CPP:

Conditioned place preference

References

  • Ali S, Champagne DL, Alia A, Richardson MK (2011) Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience. PLoS One 6:e20037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banaschewski T, Dopfner M (2014) DMS-5 - attention-deficit/hyperactivity disorder. Z Kinder Jugendpsychiatr Psychother 42:271–275 (quiz 276-277)

    Article  PubMed  Google Scholar 

  • Brownstein CA, Kleiman RJ, Engle EC, Towne MC, D’Angelo EJ, Yu TW, Beggs AH, Picker J, Fogler JM, Carroll D, Schmitt RC, Wolff RR, Shen Y, Lip V, Bilguvar K, Kim A, Tembulkar S, O’Donnell K, Gonzalez-Heydrich J (2016) Overlapping 16p13.11 deletion and gain of copies variations associated with childhood onset psychosis include genes with mechanistic implications for autism associated pathways: Two case reports. Am J Med Genet A 170A:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh AH, Evans A, Rothblum LI (2008) Mammalian Rrn3 is required for the formation of a transcription competent preinitiation complex containing RNA polymerase I. Gene Expr 14:131–147

    CAS  PubMed  Google Scholar 

  • Chatterjee D, Gerlai R (2009) High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 200:208–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Abreu MS, Genario R, Giacomini A, Demin KA, Lakstygal AM, Amstislavskaya TG, Fontana BD, Parker MO, Kalueff AV (2020) Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 445:3–11

    Article  PubMed  CAS  Google Scholar 

  • Dlugos CA, Brown SJ, Rabin RA (2011) Gender differences in ethanol-induced behavioral sensitivity in zebrafish. Alcohol 45:11–18

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Medishetti R, Rani R, Sevilimedu A, Kulkarni P, Yogeeswari P (2019) Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. J Pharmacol Toxicol Methods 95:56–65

    Article  CAS  PubMed  Google Scholar 

  • Evsyukov V, Domanskyi A, Bierhoff H, Gispert S, Mustafa R, Schlaudraff F, Liss B, Parlato R (2017) Genetic mutations linked to Parkinson’s disease differentially control nucleolar activity in pre-symptomatic mouse models. Dis Model Mech 10:633–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R (2009) Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav 8:586–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782

    Article  CAS  PubMed  Google Scholar 

  • Grewal SS, Evans JR, Edgar BA (2007) Drosophila TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway. J Cell Biol 179:1105–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumuslu KE, Savli H, Sunnetci D, Cine N, Kara B, Eren Keskin S, Akkoyunlu RU (2015) A CGH array study in nonsyndromic (primary) autism patients: deletions on 16p13.11, 16p11.2, 1q21.1, 2q21.1q21.2, and 8p23.1. Turk J Med Sci 45:313–319

    Article  CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler RC, Angermeyer M, Anthony JC, De Graaf R, Demyttenaere K, Gasquet I, De Girolamo G, Gluzman S, Gureje O, Haro JM, Kawakami N, Karam A, Levinson D, Medina Mora ME, Oakley Browne MA, Posada-Villa J, Stein DJ, Adley Tsang CH, Aguilar-Gaxiola S, Alonso J, Lee S, Heeringa S, Pennell BE, Berglund P, Gruber MJ, Petukhova M, Chatterji S, Ustun TB (2007) Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry 6:168–176

    PubMed  PubMed Central  Google Scholar 

  • Kim OH, Cho HJ, Han E, Hong TI, Ariyasiri K, Choi JH, Hwang KS, Jeong YM, Yang SY, Yu K, Park DS, Oh HW, Davis EE, Schwartz CE, Lee JS, Kim HG, Kim CH (2017) Zebrafish knockout of down syndrome gene, DYRK1A, shows social impairments relevant to autism. Mol Autism 8:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kreiner G, Bierhoff H, Armentano M, Rodriguez-Parkitna J, Sowodniok K, Naranjo JR, Bonfanti L, Liss B, Schütz G, Grummt I, Parlato R (2013) A neuroprotective phase precedes striatal degeneration upon nucleolar stress. Cell Death Differ 20:1455–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F, Schmitt A, Vernier P, Lesch KP, Bally-Cuif L (2012) The ADHD-linked gene Lphn3.1 controls locomotor activity and impulsivity in zebrafish. Mol Psychiatry 17:855

    Article  CAS  PubMed  Google Scholar 

  • Lovinger DM (1997) Serotonin’s role in alcohol’s effects on the brain. Alcohol Health Res World 21:114–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandt BH, Larson C, Fay T, Bludeau P, Allen RM, Deitrich RA, Radcliffe RA (2018) Quantitative trait loci for sensitivity to acute ethanol and ethanol consummatory behaviors in rats. Alcohol 66:55–67

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC (2001) hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters. EMBO J 20:1373–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller N, Greene K, Dydinski A, Gerlai R (2013) Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav Brain Res 240:192–196

    Article  CAS  PubMed  Google Scholar 

  • Miller NY, Gerlai R (2011) Shoaling in zebrafish: what we don’t know. Rev Neurosci 22:17–25

    Article  PubMed  Google Scholar 

  • Morozova TV, Mackay TF, Anholt RR (2014) Genetics and genomics of alcohol sensitivity. Mol Gen Genomics : MGG 289:253–269

    Article  CAS  Google Scholar 

  • Orger MB, de Polavieja GG (2017) Zebrafish behavior: opportunities and Challenges. Annu Rev Neurosci 40:125–147

    Article  CAS  PubMed  Google Scholar 

  • Panach K, Garg A, Ahmad Z (2017) Heterozygous null LDLR mutation in a familial hypercholesterolemia patient with an atypical presentation because of alcohol abuse. Circ Cardiovasc Genet 10:e001767

  • Parlato R, Kreiner G, Erdmann G, Rieker C, Stotz S, Savenkova E, Berger S, Grummt I, Schutz G (2008) Activation of an endogenous suicide response after perturbation of rRNA synthesis leads to neurodegeneration in mice. J Neurosci 28:12759–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pautassi RM, Suarez AB, Hoffmann LB, Rueda AV, Rae M, Marianno P, Camarini R (2017) Effects of environmental enrichment upon ethanol-induced conditioned place preference and pre-frontal BDNF levels in adolescent and adult mice. Sci Rep 7:8574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng J, Wagle M, Mueller T, Mathur P, Lockwood BL, Bretaud S, Guo S (2009) Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 29:8408–8418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieker C, Engblom D, Kreiner G, Domanskyi A, Schober A, Stotz S, Neumann M, Yuan X, Grummt I, Schutz G, Parlato R (2011) Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J Neurosci 31:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuckit MA (2000) Genetics of the risk for alcoholism. Am J Addict 9:103–112

    Article  CAS  PubMed  Google Scholar 

  • Stepanchick A, Zhi H, Cavanaugh AH, Rothblum K, Schneider DA, Rothblum LI (2013) DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription. J Biol Chem 288:9135–9144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumbre G, de Polavieja GG (2014) The world according to zebrafish: how neural circuits generate behavior. Front Neural Circuits 8:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran S, Gerlai R (2013) Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio). Behav Brain Res 252:204–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tropeano M, Ahn JW, Dobson RJ, Breen G, Rucker J, Dixit A, Pal DK, McGuffin P, Farmer A, White PS, Andrieux J, Vassos E, Ogilvie CM, Curran S, Collier DA (2013) Male-biased autosomal effect of 16p13.11 copy number variation in neurodevelopmental disorders. PLoS One 8:e61365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tupala E, Tiihonen J (2004) Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 28:1221–1247

    Article  CAS  PubMed  Google Scholar 

  • Vengeliene V, Bilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker ER, McGee RE, Druss BG (2015) Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiat 72:334–341

    Article  Google Scholar 

  • Yuan X, Zhao J, Zentgraf H, Hoffmann-Rohrer U, Grummt I (2002) Multiple interactions between RNA polymerase I, TIF-IA and TAF(I) subunits regulate preinitiation complex assembly at the ribosomal gene promoter. EMBO Rep 3:1082–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Zhou Y, Casanova E, Chai M, Kiss E, Grone HJ, Schutz G, Grummt I (2005) Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell 19:77–87

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC, No. 81771632 and No. 81271509) to Qiang Li and (NSFC, No. 81601329) to Xiuyun Liu as well as Natural Science Foundation of Shanghai (21ZR1410100) to Qiang Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Lin, J., Li, T. et al. Rrn3 gene knockout affects ethanol-induced locomotion in adult heterozygous zebrafish. Psychopharmacology 239, 621–630 (2022). https://doi.org/10.1007/s00213-021-06056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-06056-7

Keywords

Navigation