Skip to main content
Log in

Pentylenetetrazol-like stimulus is not produced following naloxone-precipitated mitragynine withdrawal in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Kratom (Mitragyna speciosa Korth), a native medicinal plant of Southeast Asia, is proposed to exhibit potential therapeutic value as an opioid substitute. However, studies of its negative emotional states resulting from withdrawal particularly of its main psychoactive compound, mitragynine (MG), are limited.

Objectives

Using the pentylenetetrazol (PTZ) discrimination assay, this study aims to investigate the effects of MG in responding to the PTZ stimulus and to assess the generalisation effects of withdrawal from MG to the PTZ stimulus.

Methods

Rats (n = 20) were trained on a tandem (FR-10, VI-15) schedule of food reinforcement to press one lever after administration of the anxiogenic compound PTZ (16 mg/kg, i.p.) and an alternate lever after vehicle. Following acute tests, training was suspended, and rats were chronically treated with MG or morphine at 8-h intervals for 9 days and withdrawal was precipitated on the tenth day using naloxone (1 mg/kg, i.p.). The rats were tested for generalisation to PTZ at 2, 8 and 24 h after the last dose of MG or morphine administration.

Results

Unlike morphine that produced dose-related PTZ-like stimulus, MG at 3, 10, 30 and 45 mg/kg doses showed no substitution to the PTZ discriminative stimulus. In contrast to morphine which produced a time-dependent generalisation to the PTZ stimulus, naloxone did not precipitate withdrawal effects in MG-treated rats as they selected the vehicle lever at three withdrawal time points.

Conclusion

These results demonstrate that MG produces a very different response to morphine withdrawal that is not associated with anxiogenic-like subjective symptoms. These characteristics of MG may provide further support for use as a novel pharmacotherapeutic intervention for managing opioid use disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkins JE, Boyer EW, McCurdy CR (2011) Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr Top Med Chem 11:1165–1175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Aziz Z (2012) Mitragyna speciosa use in the northern states of Malaysia: across-sectional study. J Ethnopharmacol 141:446–450

    Article  PubMed  Google Scholar 

  • Ayhan IH, Randrup A (1973) Behavioural and pharmacological studies on morphine-induced excitation of rats Possible Relation to Brain Catecholamines. Psychopharmacologia 29(317):328

    Google Scholar 

  • Becker GL, Gerak LR, Li J, Koek W, France CP (2010) Precipitated and conditioned withdrawal in morphine-treated rats. Psychopharmacology 209(1):85–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bronson ME (1993) Withdrawal from chronic haloperidol substitutes for the pentylenetetrazol discriminative stimulus. Life Sci 52:129–133

    Article  Google Scholar 

  • Bronson ME, Roberts J (1992) Withdrawal from chronic phencyclidine produces a pentylenetetrazol-like discriminative stimulus. Life Sci 50:499–504

    Article  PubMed  CAS  Google Scholar 

  • Coe MA, Pillitteri JL, Sembower MA, Gerlach KK, Henningfield JE (2019) Kratom as a substitute for opioids: results from an online survey. Drug Alcohol Depend 202:24–32

    Article  PubMed  CAS  Google Scholar 

  • Cools AR, Janssen HJ, Broekkamp CLE (1974) The differential role of the caudate nucleus and the linear raphe in the initiation and the maintenance of morphine-induced behaviour in cats. Arch Int Pharmacodyn 210:163–174

    PubMed  CAS  Google Scholar 

  • Eastlack SC, Cornett EM, Kaye AD (2020) Kratom - pharmacology, clinical implications and outlook: a comprehensive review. Pain Ther 9:55–69

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Kadi AOS, Sharif SI (1994) The influence of various experimental conditions on the expression of naloxone-induced withdrawal symptoms in mice. Gen Pharmacol 25:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Emmett-Oglesby MW, Harris CM, Lane JD, Lal H (1984) Withdrawal from morphine generalizes to a pentylenetetrazol stimulus. Neuropeptides 5:37–40

    Article  PubMed  CAS  Google Scholar 

  • Emmett-Oglesby MW, Herz A (1987) Opioid modulation of the discriminative stimulus produced by pentylenetetrazol. Psychopharmacology 92:313–319

    Article  PubMed  CAS  Google Scholar 

  • Emmett-Oglesby MW, Mathis DA, Lal H (1987) Diazepam tolerance and withdrawal assessed in an animal model of subjective drug effects. Drug Dev Res 11:145–156

    Article  CAS  Google Scholar 

  • Emmett-Oglesby MW, Rowan GA (1991) Drug discrimination used to study drug withdrawal. NIDA Res Monogr 116:337–357

    CAS  Google Scholar 

  • Farah Idayu N, Taufik Hidayat M, Moklas MAM, Sharida F, Nurul Raudzah AR, Shamima AR, Apryani E (2011) Anti-depressant like effect of mitragynine isolated from Mitragyna speciosa korth in mice model of depression. Phytomedicine 18:402–407

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Romeu A, Cox DJ, Smith KE, Dunn KE, Griffiths RR (2020) Kratom (Mitragyna speciosa): User demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend 208:107849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauvin DV, Harland RD, Holloway FA (1989) Drug discrimination procedures: a method to analyse adaptation level of affective states. Drug Dev Res 16:183–194

    Article  CAS  Google Scholar 

  • Gatch MB, Wallis CJ, Lal H (2000) Effects of ritanserin on ethanol withdrawal-induced anxiety in rats. Alcohol 21:11–17

    Article  PubMed  CAS  Google Scholar 

  • Grundmann O (2017) Patterns of kratom use and health impact in the US - results from an online survey. Drug Alcohol Depend 176:63–70

    Article  PubMed  Google Scholar 

  • Harris CM, Emmett-Oglesby MW, Robinson NG, Lal H (1986) Withdrawal from chronic nicotine substitutes partially for the interoceptive stimulus produced by pentylenetetrazol (PTZ). Psychopharmacology 90:85–89

    Article  PubMed  CAS  Google Scholar 

  • Harun N, Hassan Z, Navaratnam V, Mansor SM, Shoaib M (2015) Discriminative stimulus properties of mitragynine (kratom) in rats. Psychopharmacology 232(13):2227–2238

    Article  PubMed  CAS  Google Scholar 

  • Harun N, Johari IS, Mansor SM, Shoaib M (2020) Assessing physiological dependence and withdrawal potential of mitragynine using schedule-controlled behaviour in rats. Psychopharmacology 237:855–867

    Article  PubMed  CAS  Google Scholar 

  • Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R, Vicknasingam BK, Amato D, von Hörsten S, Ismail NIW, Jayabalan N, Hazim AI, Mansor SM, Müller CP (2013) From Kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 37:138–151

    Article  PubMed  CAS  Google Scholar 

  • Hassan R, Pike See C, Sreenivasan S, Mansor SM, Müller CP, Hassan Z (2020) Mitragynine attenuates morphine withdrawal effects in rats-a comparison with methadone and buprenorphine. Front Psychiatry 7(11):411

    Article  Google Scholar 

  • Hazim AI, Ramanathan S, Parthasarathy S, Muzaimi M, Mansor SM (2014) Anxiolytic-like effects of mitragynine in the open-field and elevated plus-maze tests in rats. J Physiol Sci 64:161–169

    Article  PubMed  CAS  Google Scholar 

  • Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR (2019) Abuse liability and therapeutic potential of the Mitragyna speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine. Addict Biol 24(5):874–885

    Article  PubMed  CAS  Google Scholar 

  • Henningfield JE, Fant RV, Wang DW (2018) The abuse potential of kratom according the 8 factors of the controlled substances act: implications for regulation and research. Psychopharmacology 235(2):573–589

    Article  PubMed  CAS  Google Scholar 

  • Johnson LE, Balyan L, Magdalany A, Saeed F, Salinas R, Wallace S, Veltri CA, Swogger MT, Walsh Z, Grundmann O (2020) The potential for kratom as an antidepressant and antipsychotic. Yale J Biol Med 93(2020):283–289

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jones CM, Einstein EB, Compton WM (2018) Changes in synthetic opioid involvement in drug overdose deaths in the United States, 2010–2016. JAMA 319(17):1819–1821

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung ME, Wallis CJ, Gatch MB, Lal H (1999) Sex differences in the pentylenetetrazol-like stimulus induced by ethanol withdrawal. J Pharmacol Exp Ther 292:576–582

    Google Scholar 

  • Jung ME, Lal H, Gatch MB (2002) The discriminative stimulus effects of pentylenetetrazol as a model of anxiety: recent developments. Neurosci Biobehav Rev 26:429–439

    Article  PubMed  CAS  Google Scholar 

  • Kest B, Palmese CA, Hopkins E, Adler M, Juni A, Mogil JS (2002) Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 115(2):463–469

    Article  PubMed  CAS  Google Scholar 

  • Kim S (2019) The unsuspected threat of three opioid-like substitutes. Arch Psychiat Nurs 33:325–328

    Article  Google Scholar 

  • Koob G, Le Moal M (2005a) Neurobiology of addiction. Academic press, San Diego

    Google Scholar 

  • Koob G, Le Moal M (2005b) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    Article  PubMed  CAS  Google Scholar 

  • Kruegel AC, Grundmann O (2018) The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 134:108–120

    Article  PubMed  CAS  Google Scholar 

  • Lal H, Emmett-Oglesby MW (1983) Behavioural analogues of anxiety. Anim Models Neuropharmacol 22:1423–1441

    Article  CAS  Google Scholar 

  • Leong Bin Abdullah MFI, Singh D, Swogger MT, Rahim AA, Vicknasingam B (2019) The prevalence of psychotic symptoms in kratom (Mitragyna speciosa korth.) users in Malaysia. Asian J Psychiatr 43:197–201

    Article  PubMed  Google Scholar 

  • Matsumoto K, Mizowaki M, Suchitra T, Takayama H, Sakai S, Aimi N, Watanabe H (1996) Antinociceptive action of mitragynine in mice: evidence for the involvement of supraspinal opioid receptors. Life Sci 59:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Meepong R, Sooksawate T (2019) Mitragynine reduced morphine-induced conditioned place preference and withdrawal in rodents. Thai J Pharm Sci 43(1):21–29

    CAS  Google Scholar 

  • O’Brien CP (1996) Drug addiction and drug abuse. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 557–577

    Google Scholar 

  • Petrosky E, Harpaz R, Fowler KA, Bohm MK, Helmick CG, Yuan K, Betz CJ (2018) Chronic pain among suicide decedents, 2003 to 2014: findings from the National Violent Death Reporting System. Ann Intern Med 169(7):448–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Prather PL, Lal H (1992) Protracted withdrawal: sensitization of the anxiogenic response to cocaine in rats concurrently treated with ethanol. Neuropsychopharmacology 6:23–29

    PubMed  CAS  Google Scholar 

  • Prozialeck WC, Jivan JK, Andurkar SV (2012) Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 112(12):792–799

    PubMed  Google Scholar 

  • Prozialeck WC, Avery BA, Boyer EW, Grundmann O, Henningfield JE, Kruegel AC, McMahon LR, McCurdy CR, Swogger MC, Veltri CA, Singh D (2019) Kratom policy: the challenge of balancing therapeutic potential with public safety. Int J Drug Policy 70:70–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Saingam SD, Assanangkornchai S, Geater AF, Balthip Q (2013) Pattern and consequences of krathom (Mitragyna speciosa Korth.) use among male villagers in southern Thailand: a qualitative study. Int J Drug Pol 24:351–358

    Article  Google Scholar 

  • Sasaki K, Fan LW, Tien LT, Ma T, Loh HH, Ho IK (2002) The interaction of morphine and gamma-aminobutyric acid (GABA)ergic systems in anxiolytic behavior: using mu-opioid receptor knockout mice. Brain Res Bull 57:689–694

    Article  PubMed  CAS  Google Scholar 

  • Self DW, Nestler EJ (1998) Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcohol Depend 51(1–2):49–60

    Article  PubMed  CAS  Google Scholar 

  • Seth P, Scholl L, Rudd RA, Bacon S (2018) Overdose deaths involving opioids, cocaine, and psychostimulants - United States, 2015–2016. Am J Transplant 18(6):1556–1568

    Article  Google Scholar 

  • Singh D, Müller CP, Vicknasingam BK (2014) Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 139:132–137

    Article  PubMed  Google Scholar 

  • Singh D, Müller CP, Vicknasingam BK, Mansor SM (2015) Social functioning of kratom (Mitragyna speciosa) users in Malaysia. J Psycho Drugs 47(2):125–131

    Article  Google Scholar 

  • Singh D, Narayanan S, Vicknasingam B, Corazza C, Santacroce R, Roman-Urrestarazu A (2017) Changing trends in the use of kratom (Mitragyna speciosa) in Southeast Asia. Hum Psychopharmacol Clin Exp 32:e2582

    Article  Google Scholar 

  • Singh D, Narayanan S, Müller CP, Swogger MT, Rahim AA, Leong Bin Abdullah MFI, Vicknasingam BK (2018) Severity of kratom (Mitragyna speciosa Korth.) psychological withdrawal symptoms. J Psycho Drugs 50(5):445–450

    Article  Google Scholar 

  • Swogger MT, Hart E, Erowid F, Trabold N, Yee K, Parkhurst KA, Priddy BM, Walsh Z (2015) Experiences of kratom users: a qualitative analysis. J Psycho Drugs 47(5):360–367

    Article  Google Scholar 

  • Swogger MT, Walsh Z (2018) Kratom use and mental health: a systematic review. Drug Alcohol Depend 183:134–140

    Article  PubMed  Google Scholar 

  • Tsuda M, Suzuki T, Misawa M, Nagase H (1996) Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 307:7–14

    Article  PubMed  CAS  Google Scholar 

  • Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM (2011) Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E (2) production induced by lipopolysaccharide in RAW264.7 macrophage cells. J Ethnopharmacol 136:75–82

    Article  PubMed  CAS  Google Scholar 

  • Uzbay IT, Lal H (2002) Effects of Ng-nitro-L-arginine methyl ester, 7-nitro indazole, and agmatine on pentylenetetrazol-induced discriminative stimulus in Long-Evans rats. Prog Neuropsychopharmacol Biol Psychiatr 26:567–573

    Article  CAS  Google Scholar 

  • Vijeepallam K, Pandy V, Kunasegaran T, Murugan DD, Naidu M (2016) Mitragyna speciosa leaf extract exhibits antipsychotic-like effect with the potential to alleviate positive and negative symptoms of psychosis in mice. Front Pharmacol 7:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW (2011) Herbal medicines for the management of opioid addiction: safe and effective alternatives to conventional pharmacotherapy. CNS Drugs 25:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Yusoff NH, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, Amato D, Dringenberg HC, Mansor SM, Navaratnam V, Müller CP (2016) Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict Biol 21(1):98–110

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was financially supported by USM Short Term Research Grant (304/CDADAH/6315105), Higher Education Centre of Excellence (HiCoE) special funding (311/CDADAH/4401009) and Yang di-Pertuan Agong (BYDPA) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norsyifa Harun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johari, I.S., Harun, N., Sofian, Z.M. et al. Pentylenetetrazol-like stimulus is not produced following naloxone-precipitated mitragynine withdrawal in rats. Psychopharmacology 238, 3183–3191 (2021). https://doi.org/10.1007/s00213-021-05934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05934-4

Keywords

Navigation