Skip to main content

Advertisement

Log in

Assessing physiological dependence and withdrawal potential of mitragynine using schedule-controlled behaviour in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Kratom is proposed to exhibit therapeutic potential as an opium substitute, but little is known about its dependence-producing profile, particularly of its main psychoactive compound, mitragynine (MG).

Objectives

This study examined the dependence-producing effects of MG using operant-scheduled behaviour in rats and investigated the potential therapeutic effect of MG by comparing effects to buprenorphine in morphine-dependent rats using the same schedule-controlled behavioural task.

Methods

The effects of acutely administered MG and morphine were determined in rats trained to respond under fixed-ratio (FR) 10 schedule of food reinforcement. Next, the rats were administered MG and morphine twice daily for 14 consecutive days to determine if physiological dependence would develop by examining cessation of drug treatment and following antagonist-precipitated withdrawal. The study then examined the effects of MG substitution to suppress naloxone-precipitated morphine withdrawal effects on scheduled responding.

Results

Acute doses of MG did not produce dose-related decreases on FR schedules of responding compared to morphine. Unlike morphine, MG-treated rats showed no suppression of response rates following cessation of MG treatment. However, withdrawal effects were evident for MG after precipitation by either naloxone or SR141716A (rimonabant), similar to morphine-treated rats. MG in higher doses (10 and 30 mg/kg) attenuated the naloxone-precipitated morphine withdrawal effects while smaller doses of buprenorphine (0.3 and 1.0 mg/kg) were necessary to alleviate these effects.

Conclusion

The findings suggest that MG does not induce physiological dependence but can alleviate the physical symptoms associated with morphine withdrawal which represent the desired characteristics of novel pharmacotherapeutic interventions for managing opioid use disorder (OUD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JU, Holtzman SG (1990) Tolerance and dependence after continuous morphine infusion from osmotic pumps measured by operant responding in rats. Psychopharmacology 100(4):451–458

    CAS  PubMed  Google Scholar 

  • Aceto MD (1990) Assessment of physical dependence techniques for the evaluation of abused drugs. In: Adler MW, Cowan A (eds) Testing and evaluation of drugs of abuse. Wiley-Liss, New York, pp 67–79

    Google Scholar 

  • Ahmad K, Aziz Z (2012) Mitragyna speciosa use in the northern states of Malaysia: a cross-sectional study. J Ethnopharmacol 141:446–450

    PubMed  Google Scholar 

  • An XF, Zhang Y, Winter JC, Li JX (2012) Effects of imidazoline I2 receptor agonists and morphine on schedule-controlled responding in rats. Pharmacol Biochem Behav 101(3):354–359

    CAS  PubMed  Google Scholar 

  • Anraku T, Ikegaya Y, Matsuki N, Nishiyama N (2001) Withdrawal from chronic morphine administration causes prolonged enhancement of immobility in rat forced swimming test. Psychopharmacology 157:217–220

    CAS  PubMed  Google Scholar 

  • Assanangkornchai S, Muekthong A, Sam-Angsri N, Pattanasattayawong U, Takayama H (2007) The use of Mitragyna speciosa (“Krathom”), an addictive plant, in Thailand. Subst Use Misuse 42:2145–2157

    PubMed  Google Scholar 

  • Balster RL (1985) Behavioural studies of tolerance and dependence. In: Seidin LS, Balster RL (eds) Behavioural pharmacology; the current status. Neurology and neurobiology, vol 13. Liss, New York, pp 403–418

    Google Scholar 

  • Beardsley PM, Martin BR (2000) Effects of the cannabinoid CB1 receptor antagonist, SR141716A, after Δ9-tetrahydrocannabinol withdrawal. Eur J Pharmacol 387(1):47–53

    CAS  PubMed  Google Scholar 

  • Becker GL, Gerak LR, Li J, Koek W, France CP (2010) Precipitated and conditioned withdrawal in morphine-treated rats. Psychopharmacology 209(1):85–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer EW, Babu KM, Adkins JE, McCurdy CR, Halpern JH (2008) Self-treatment of opioid withdrawal using kratom (Mitragyna speciosa korth). Addiction 103(6):1048–1050

    PubMed  PubMed Central  Google Scholar 

  • Cheaha D, Kewapradub N, Sawangjaroen K, Phukpattaranont P, Kumarnist E (2017) Effects of an alkaloid-rich extract from Mitragyna speciosa leaves and fluoxetine on sleep profiles, EEG spectral frequency and ethanol withdrawal symptoms in rats. Phytomed 22:1000–1008

    Google Scholar 

  • Cooper ZD, Troung YN, Shi YG, Woods JH (2008) Morphine deprivation increases self-administration of the fast- and short- acting mu-opioid receptor agonist remifentanil in the rat. J Pharmacol Exp Ther 326:920–929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper ZD, Shi YG, Woods JH (2010) Reinforcer-dependent enhancement of operant responding in opioid withdrawn rats. Psychopharmacology 212:369–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compton WM, Volkow ND (2006) Major increases in opioid analgesic abuse in the United States: concerns and strategies. Drug Alcohol Depend 81(2):103–107

    PubMed  Google Scholar 

  • Fride E (2002) Endocannabinoids in the central nervous system- an overview. Prostaglandins Leukot Essent Fatty Acids 66(2–3):221–233

    CAS  PubMed  Google Scholar 

  • Ford RD, Balster RL (1976) Schedule-controlled behaviour in the morphine-dependent rat. Pharmacol Biochem Behav 4:569–573

    CAS  PubMed  Google Scholar 

  • Goldberg SR, Risner ME, Stolerman IP, Reavill C, Garcha HS (1989) Nicotine and some related compounds: effects on schedule-controlled behaviour and discriminative properties in rats. Psychopharmacology 97:295–302

    CAS  PubMed  Google Scholar 

  • Gonzalez G, Oliveto A, Kosten TR (2004) Combating opiate dependence: a comparison among the available pharmacological options. Expert Opin Pharmacother 5:4,713–4,725

    Google Scholar 

  • Grundmann O (2017) Patterns of kratom use and health impact in the US-results from an online survey. Drug Alcohol Depend 176:63–70

    PubMed  Google Scholar 

  • Gunter BW, Platt DM, Rowlett JK (2015) Differential interactions engendered by benzodiazepine and neuroactive steroid combinations on schedule-controlled responding in rats. Pharm Biochem and Behav 137:53–59

    CAS  Google Scholar 

  • Harun N, Hassan Z, Navaratnam V, Mansor SM, Shoaib M (2015) Discriminative stimulus properties of mitragynine (kratom) in rats. Psychopharmacology 232(13):2227–2238

    CAS  PubMed  Google Scholar 

  • Hassan Z, Muzaimi M, Navaratnam V, Yusoff NH, Suhaimi FW, Vadivelu R, Vicknasingam BK, Amato D, von Hörsten S, Ismail NI, Jayabalan N, Hazim AI, Mansor SM, Müller CP (2013) From kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse and addiction. Neurosci Biobehav Rev 37(2):138–151

    CAS  PubMed  Google Scholar 

  • Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR (2018) Abuse liability and therapeutic potential of the Mitragyna speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine. Addict Biol. https://doi.org/10.1111/adb.12639

    PubMed  Google Scholar 

  • Hiranita T, Leon F, Felix JS, Rastrepo LF, Reeves ME, Pennington AE, Obeng S, Avery BA, McCurdy CR, McMahon LR, Wilkerson JL (2019) The effects of mitragynine and morphine on scheduled-controlled responding and antinociception in rats. Psychopharmacology 236:2725–2734. https://doi.org/10.1007/s00213-019-05247-7

    Article  CAS  PubMed  Google Scholar 

  • Ismail NIW, Jayabalan N, Mansor SM, Muller CP, Muzaimi M (2017) Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice. Addict Biol 22(4):967–976

    CAS  PubMed  Google Scholar 

  • Jones JD, Manubay JM, Mogali S, Metz VE, Madera G, MartinezS MM, Comer SD (2017) Abuse liability if intravenous buprenorphine vs. buprenorphine/naloxone: importance of absolute naloxone amount. Drug Alcohol Depend 179:362–369

    CAS  PubMed  Google Scholar 

  • Khor B, Jamil S, Adenan MFA, Adenan MI, Shu-Chien AC (2011) Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS One 6(12):e28340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruegel AC, Gassaway MM, Kapoor A, Varadi A, Majumdar S, Filizola M (2016) Synthetic and receptor signaling explorations of the Mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J American Chem Soc 138:6754–6764

    CAS  Google Scholar 

  • Li X, Li JX, France CP (2010) Interactions between morphine, scopolamine and nicotine: schedule-controlled responding in rats. Pharmacol Biochem Behav 96(1):91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman AH, Sheikh SM, Loh HH, Martin BR (2001) Opioid and cannabinoid modulation of precipitated withdrawal in Δ9-Tetrahydrocannabinol and morphine-dependent mice. J Pharmacol Exp Ther 298:1007–1041

    CAS  PubMed  Google Scholar 

  • Macko E, Weisbach JA, Douglas B (1972) Some observations on the pharmacology of mitragynine. Arch Int de Pharmacodynamieet de Therapie 198:145–161

    CAS  Google Scholar 

  • Maldonado R (2002) Study of cannabinoid dependence in animals. Pharmacol Ther 95:153–164

    CAS  PubMed  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29(4):225–232

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Mizowaki M, Suchitra T, Takayama H, Sakai S, Aimi N, Watanabe H (1996) Antinociceptive action of mitragynine in mice: evidence for the involvement of supraspinal opioid receptors. Life Sci 59:1149–1155

    CAS  PubMed  Google Scholar 

  • Nanthini J, Ismail NIW, Mansor SM, Muller CP, Muzaimi M (2015) Cerebellum and endocannabinoid receptors: a new possible neurobiological link for mitragynine (Mitragyna speciosa Korth) abuse liability. J Addict Depend 1(1):1–7

    Google Scholar 

  • Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharma 7:27–31

    Google Scholar 

  • Navarro M, Chowen J, Carrera MRA, del Arco I, Villanua MA, Martin Y, Robert AJ, Koob GF, de Fonseca FR (1998) CB1 cannabinoid receptor antagonist induced opiate withdrawal in morphine-dependent rats. Neuroreport 9:3397–3402

    CAS  PubMed  Google Scholar 

  • Palma J, Abood ME, Benamar K (2015) HIV-gp120 and physical dependence to buprenorphine. Drug Alcohol Depend 150:175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prozialeck WC, Jivan JK, Andurkar SV (2012) Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 112(12):792–799

    PubMed  Google Scholar 

  • Ponglux D, Wongseripipatana S, Takayama H, Kikuchi M, Kurihara M, Kitajima M, Aimi N, Sakai S (1994) A new indole alkaloid, 7alpha-hydroxy-7H-mitragynine, from Mitragyna speciosa in Thailand. Planta Med 60:580–581

    CAS  PubMed  Google Scholar 

  • Sabetghadam A, Navaratnam V, Mansor SM (2013) Dose-response relationships, acute toxicity, and therapeutic index between the alkaloid extract of Mitragyna speciosa and its main active compound mitragynine in mice. Drug Dev Res 74:23–30

    CAS  Google Scholar 

  • Saingam D, Assanangkornchai S, Geater AF, Balthip Q (2013) Pattern and consequences of krathom (Mitragyna speciosa Korth.) use among male villagers in southern Thailand: a qualitative study. Int J Drug Policy 24(4):351–358

    PubMed  Google Scholar 

  • Salmanzadeh H, Azizi H, Semnanian S (2017) Adolescent chronic escalating morphine induce long lasting changes in tolerance and dependence to morphine in rats. Physio Behav 174:191–196

    CAS  Google Scholar 

  • Schulties G, Morse AC, Liu J (2003) Repeated experience with naloxone facilitates acute morphine withdrawal: potential role for conditioning processes in acute opioid dependence. Pharmacol Biochem Behav 76:493–503

    Google Scholar 

  • Shamima AR, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MA, Arulsevan P (2012) Antinociceptive action of isolated mitragynine from Mitragyna speciosa through activation of opioid receptor system. Int J Mol Sci 13:11427–11442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Müller CP, Vicknasingam BK (2014) Kratom (Mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 139:132–137

    PubMed  Google Scholar 

  • Singh D, Narayanan S, Vicknasingam B (2016) Traditional and non-traditional uses of mitragynine (Kratom): a survey of the literature. Brain Res Bull 126:41–46

    CAS  PubMed  Google Scholar 

  • Singh D, Narayanan S, Vicknasingam B, Corazza C, Santacroce R, Roman-Urrestarazu A (2017) Changing trends in the use of kratom (Mitragyna speciosa) in Southeast Asia. Hum Psychopharmacol Clin Exp:e2582

  • Shellard EJ (1974) The alkaloids of Mitragyna with special reference to those of Mitragyna speciosa Korth. Bull Narc 26(2):41–55

    CAS  PubMed  Google Scholar 

  • Stoller DC, Smith FL (2004) Buprenorphine blocks withdrawal in morphine-dependent rat pups. Pediatr Anesth 14:642–649

    Google Scholar 

  • Suwanlert S (1975) Study of kratom eaters in Thailand. Bull Narc 27(3):21–27

    CAS  PubMed  Google Scholar 

  • Swogger MT, Hart E, Erowid F, Trabold N, Yee K, Parkhurst KA, Priddy BM, Walsh Z (2015) Experiences of kratom users: a qualitative analysis. J Psycho Drugs 47(5):360–367

    Google Scholar 

  • Swogger MT, Walsh Z (2018) Kratom use and mental health: a systematic review. Drug Alcohol Depend 183:134–140

    PubMed  Google Scholar 

  • Takayama H, Ishikawa H, Kurihara M, Kitajima M, Aimi N, Ponglux D, Koyama F, Matsumoto K, Moriyama T, Yamamoto LT, Watanabe K, Murayama T, Horie S (2002) Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands. J Med Chem 45:1949–1956

    CAS  PubMed  Google Scholar 

  • Thongpradichote S, Matsumoto K, Tohda M, Takayama H, Aimi N, Sakai S, Watanabe H (1998) Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice. Life Sci 62:1371–1378

    CAS  PubMed  Google Scholar 

  • Thorn DA, Zhang Y, Li J (2016) Effects of the imidazoline I2 receptor agonist 2-BFI on the development of tolerance to and behavioural/physical dependence on morphine in rats. Br J Pharmacol 173:1363–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsou K, Patrick SL, Walker JM (1995) Physical withdrawal in rats tolerant to Δ9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol 280(3):R13–R15

    CAS  PubMed  Google Scholar 

  • Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM (2011) Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E (2) production induced by lipopolysaccharide in RAW264.7 macrophage cells. J Ethnopharmacol 136:75–82

    CAS  PubMed  Google Scholar 

  • Varvel SA, Vann RE, Wise LE, Philibin SD, Porter JH (2002) Effects of antipsychotic drugs on operant responding after acute and repeated administration. Psychopharmacology 160:182–191

    CAS  PubMed  Google Scholar 

  • Vicknasingam B, Narayanan S, Beng GT, Mansor SM (2010) The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int J Drug Policy 21:283–288

    PubMed  Google Scholar 

  • Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic advances from brain disease model of addiction. N Engl J Med 374(4):363–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Yano S, Horie S, Yamamoto LT, Sakai S, Takayama H, Ponglux D, Wongseripipatan S (1992) Pharmacological profiles of ‘kratom’ (Mitragyna speciosa), a Thai medical plant with special reference to its analgesic activity. In: Tongroach P, Watanabe H, Ponglux D, Suvanakoot U, Ruangrungsi N (Eds.). Adv Res Pharmacol Act Subst Nat Prod 125-132

  • Watanabe K, Yano S, Horie S, Yamamoto LT, Takayama H, Aimi H, Sakai S, Ponglux D, Tongroacj P, Shan J, Pang PKT (1999) Pharmacological properties of some structurally related indole alkaloids contained in the Asian herbal medicines, hirsutine and mitragynine, with special reference to their Ca2+ antagonistic and opioid-like effects. In: Watanabe, H., Shibuya, N.R., Farnsworth, N.R. (Eds.). Pharmacol Res Tradit Herb Med 11:163–177

  • Yue K, Kopajtic TA, Katz JL (2018) Abuse liability of mitragynine assessed with a self-administration procedure in rats. Psychopharmacology 235(10):2823–2829

    CAS  PubMed  Google Scholar 

  • Yusoff NH, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, Amato D, Dringenberg HC, Mansor SM, Navaratnam V, Müller CP (2016) Abuse potential and adverse cognitive effects of mitragynine (kratom). Addict Biol 21(1):98–110

    CAS  PubMed  Google Scholar 

  • Yusoff NH, Mansor SM, Müller CP, Hassan Z (2017) Opioid receptors mediate the acquisition, but not the expression of mitragynine-induced conditioned place preference in rats. Behav Brain Res 332:1–6

    CAS  PubMed  Google Scholar 

Download references

Funding

This research received financial support from Higher Education Centre of Excellence (HICoE) special funding (311/CDADAH/4401009) and USM Short Term Research Grant (304/CDADAH/6315105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norsyifa Harun.

Ethics declarations

The experiments were conducted within the bounds of local ethical regulations and were carried out in accordance with the guidelines for the use of experimental animals and approved by the Animal Ethics Committee, Universiti Sains Malaysia (AECUSM).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harun, N., Johari, I.S., Mansor, S.M. et al. Assessing physiological dependence and withdrawal potential of mitragynine using schedule-controlled behaviour in rats. Psychopharmacology 237, 855–867 (2020). https://doi.org/10.1007/s00213-019-05418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05418-6

Keywords

Navigation