Skip to main content

Advertisement

Log in

The synthetically produced predator odor 2,5-dihydro-2,4,5-trimethylthiazoline increases alcohol self-administration and alters basolateral amygdala response to alcohol in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Post-traumatic stress disorder (PTSD) is a psychiatric illness that can increase the risk for developing an alcohol use disorder (AUD). While clinical data has been useful in identifying similarities in the neurobiological bases of these disorders, preclinical models are essential for understanding the mechanism(s) by which stressors increase the risk for escalated alcohol consumption. The purpose of these studies was to examine if exposure of male Long-Evans rats to the synthetically derived predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT; a component of fox feces) would increase sweetened alcohol self-administration, potentially by facilitating transfer of salience towards cues, and alter neuronal response to alcohol as measured by the immediate early gene c-Fos. In experiment 1, rats exposed to repeated (4×) TMT showed reductions in port entries in Pavlovian conditioned approach and increases in sweetened alcohol self-administration. In experiment 2, rats exposed to repeated TMT showed blunted basolateral amygdala c-Fos response to alcohol. In experiment 3, rats exposed to single, but not repeated TMT, showed increases in sweetened alcohol self-administration, and no change in anxiety-like behavior or hyperarousal. In experiment 4, rats continued to show a significant corticosterone response to TMT after repeated exposures. In summary, exposure of male rats to TMT can cause escalations in sweetened alcohol self-administration and reduction in BLA response to alcohol. These studies outline and utilize a novel preclinical model that can be used to further neurobiological understanding of the emergence of escalated alcohol consumption following stress exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This work was supported by the National Institute of Health AA026537 (JB), AA011605(JB) and by the Bowles Center for Alcohol Studies. VHM was supported by AA027436 and NS007431, and JPF was supported by GM089569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Besheer.

Ethics declarations

All procedures were carried out in accordance with the NIH Guide for Care and Use of Laboratory Animals, and institutional guidelines. All protocols were approved by the UNC Institutional Animal Care and Use Committee (IACUC). UNC-Chapel Hill is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhijani, V.H., Franklin,, J.P., Van Voorhies, K. et al. The synthetically produced predator odor 2,5-dihydro-2,4,5-trimethylthiazoline increases alcohol self-administration and alters basolateral amygdala response to alcohol in rats. Psychopharmacology 238, 67–82 (2021). https://doi.org/10.1007/s00213-020-05659-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05659-w

Keywords

Navigation