Skip to main content
Log in

Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Prolinol aryl ethers and their rigidified analogues pyrrolidinyl benzodioxanes have a high affinity for mammalian α4β2 nicotinic acetylcholine receptors (nAChRs). Electrophysiological studies have shown that the former are full agonists and the latter partial agonists or antagonists of human α4β2 receptors, but their in vivo effects are unknown.

Objectives and methods

As α4β2 nAChRs play an important role in the cognition and the rewarding effects of nicotine, we tested the effects of two full agonists and one antagonist on spatial learning, memory and attention in zebrafish using a T-maze task and virtual object recognition test (VORT). The effect of a partial agonist in reducing nicotine-induced conditioned place preference (CPP) was also investigated.

Results

In comparison with the vehicle alone, the full agonists MCL-11 and MCL-28 induced a significant cognitive enhancement as measured by the reduced running time in the T-maze and increased attention as measured by the increased discrimination index in the VORT. MCL-11 was 882 times more potent than nicotine. The two compounds were characterised by an inverted U-shaped dose-response curve, and their effects were blocked by the co-administration of the antagonist MCL-117, which alone had no effect. The partial agonist MCL-54 induced CPP and had an inverted U-shaped dose-response curve similar to that of nicotine but blocked the reinforcing effect of co-administered nicotine. Binding studies showed that all of the compounds have a higher affinity for heteromeric [3H]-epibatidine receptors than [125I]-αBungarotoxin receptors. MCL-11 was the most selective of heteromeric receptors.

Conclusions

These behavioural studies indicate that full agonist prolinol aryl ethers are very active in increasing spatial learning, memory and attention in zebrafish. The benzodioxane partial agonist MCL-54 reduced nicotine-induced CPP, and the benzodioxane antagonist MCL-117 blocked all agonist-induced activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman KM, Boyd RT (2016) Nicotinic acetylcholine receptor technologies analysis of nicotinic acetylcholine receptor (nAChR) gene expression in Zebrafish (Danio rerio) by in situ hybridization and PCR. In: Li M (ed) Nicotinic acetylcholine receptor technologies Neuromethods, vol 117. Humana Press, New York, pp 1–31

    Chapter  Google Scholar 

  • Ackerman KM, Nakkula R, Zirger JM, Beattie CE, Boyd RT (2009) Cloning and spatiotemporal expression of zebrafish neuronal nicotinic acetylcholine receptor alpha 6 and alpha 4 subunit RNAs. Dev Dyn 238:980–992

    Article  CAS  Google Scholar 

  • Anthenelli RM, Benowitz NL, West R, St Aubin L, McRae T, Lawrence D, Ascher J, Russ C, Krishen A, Evins AE (2016) Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): a double-blind, randomized, placebo-controlled clinical trial. Lancet 387:2507–2520

    Article  CAS  Google Scholar 

  • Baldwin PR, Alanis R, Salas R (2011) The role of the Habenula in nicotine addiction. J Addict Res Ther. Oct 20;S1(2).Pii: 002

  • Bolchi C, Pallavicini M, Fumagalli L, Rusconi C, Binda M and Valoti E (2007) Resolution of 2-substituted 1,4-benzodioxanes by entrainment. Tetrahedron: Asymmetry 18(9):1038–1041

  • Bolchi C, Gotti C, Binda M, Fumagalli L, Pucci L, Pistillo F, Vistoli G, Valoti E, Pallavicini M (2011) Unichiral 2-(2′-pyrrolidinyl)-1,4-benzodioxanes: the 2R,2'S diastereomer of the N-methyl-7-hydroxy analogue is a potent alpha4beta2- and alpha6beta2-nicotinic acetylcholine receptor partial agonist. J Med Chem 54(21):7588–7601

  • Bolchi C, Valoti E, Straniero V, Ruggeri P, Pallavicini M (2014) From 2-aminomethyl-1,4-benzodioxane enantiomers to unichiral 2-cyano- and 2-carbonyl-substituted benzodioxanes via dichloroamine. J Org Chem 79(14):6732–6737

  • Bolchi C, Valoti E, Gotti C, Fasoli F, Ruggeri P, Fumagalli L, Binda M, Mucchietto V, Sciaccaluga M, Budriesi R, Fucile S, Pallavicini M (2015) Chemistry and pharmacology of a series of unichiral analogues of 2-(2-pyrrolidinyl)-1,4-benzodioxane, prolinol phenyl ether, and prolinol 3-pyridyl ether designed as alpha4beta2-nicotinic acetylcholine receptor agonists. J Med Chem 58(16):6665–6677

  • Bolchi C, Bavo F, Fumagalli L, Gotti C, Fasoli F, Moretti M, Pallavicini M (2016) Novel 5-substituted 3-hydroxyphenyl and 3-nitrophenyl ethers of S-prolinol as α4β2-nicotinic acetylcholine receptor ligands. Bioorg Med Chem Lett 26(23):5613–5617

  • Bolchi C, Bavo F, Gotti C, Fumagalli L, Fasoli F, Binda M, Mucchietto V, Sciaccaluga M, Plutino S, Fucile S, Pallavicini M (2017) From pyrrolidinyl-benzodioxane to pyrrolidinyl-pyridodioxanes, or from unselective antagonism to selective partial agonism at alpha4beta2 nicotinic acetylcholine receptor. Eur J Med Chem 125:1132–1144

  • Boyd RT (2013) Use of zebrafi sh to identify new CNS drugs acting through nicotinic and dopaminergic systems. Front CNS Drug Discov 2:381–406

    Article  Google Scholar 

  • Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M (2007) Hallucinatory and rewarding effect of salvinorin a in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology 190:441–448

  • Braida D, Ponzoni L, Martucci R, Sparatore F, Gotti C, Sala M (2014a) Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psycopharmacology 231:1975–1985

  • Braida D, Ponzoni L, Martucci R, Sala M (2014b) A new model to study visual attention in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 55:80–86

  • Cahill K, Lindson-Hawley N, Thomas KH, Fanshawe TR, Lancaster T (2016) Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 5:CD006103

    Google Scholar 

  • Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4(1):21–40

    Article  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393(6680):76–79

    Article  CAS  Google Scholar 

  • Etter JF, Stapleton JA (2006) Nicotine replacement therapy for long-term smoking cessation: a meta-analysis. Tob Control 15:280–285

    Article  Google Scholar 

  • Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB (2018) The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp Neurol 299(Pt A):157–171

    Article  Google Scholar 

  • Geerts H (2012) α7 nicotinic receptor modulators for cognitive deficits in schizophrenia and Alzheimer's disease. Expert Opin Investig Drugs 21:59–65

    Article  CAS  Google Scholar 

  • Gómez-Laplaza LM, Gerlai R (2010) Latent learning in zebrafish (Danio rerio). Behav Brain Res 208(2):509–515

    Article  Google Scholar 

  • Gupta T, Mullin MC (2010) Dissection of organs from the adult zebrafish. J Vis Exp 37:1717

    Google Scholar 

  • Howe WM, Ji J, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401

  • Itou J, Kawakami H, Burgoyne T, Kawakami Y (2012) Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biol Open 1(8):739–746

    Article  Google Scholar 

  • Karnik I, Gerlai R (2012) Can zebrafish learn spatial tasks? An empirical analysis of place and single CS-US associative learning. Behav Brain Res 233:415–421

    Article  Google Scholar 

  • Kathuria H, Leone FT, Neptune ER (2018) Treatment of tobacco dependence: current state of the art. Curr Opin Pulm Med 24:327–334

    Article  Google Scholar 

  • Kundap U, Jaiswal Y, Sarawade R, Williams L, Shaikh MF (2017) Effect of pelargonidin isolated from Ficus benghalensis L. on phenotypic changes in zebrafish (Danio rerio) embryos. Saudi Pharm J 25:249–257

    Article  Google Scholar 

  • Leiser SC, Bowlby MR, Comery TA, Dunlop J (2009) A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther 122:302–311

    Article  CAS  Google Scholar 

  • Lendvai B, Kassai F, Szájli A, Némethy Z (2013) α7 nicotinic acetylcholine receptors and their role in cognition. Brain Res Bull 93:86–96

    Article  CAS  Google Scholar 

  • Levin ED (2012) α7-nicotinic receptors and cognition. Curr Drug Targets 13:602–606

    Article  CAS  Google Scholar 

  • McKay BE, Placzek AN, Dani JA (2007) Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 74:1120–1133

    Article  CAS  Google Scholar 

  • Pallavicini M, Moroni B, Bolchi C, Cilia A, Clementi F, Fumagalli L, Gotti C, Meneghetti F, Riganti L, Vistoli G, Valoti E (2006) Synthesis and α4β2 nicotinic affinity of unichiral 5-(2-pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes. Bioorg Med Chem Lett 16(21):5610–5615

  • Pallavicini M, Bolchi C, Binda M, Cilia A, Clementi F, Ferrara R, Fumagalli L, Gotti C, Moretti M, Pedretti A, Vistoli G, Valoti E (2009) 5-(2-Pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes: synthesis of all the stereoisomers and α4β2 nicotinic affinity. Bioorg Med Chem Lett 19(3):854–859

  • Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40(1):46–57

    Article  CAS  Google Scholar 

  • Paolini M, De Biasi M (2011) Mechanistic insights into nicotine withdrawal. Biochem Pharmacol 82(8):996–1007

    Article  CAS  Google Scholar 

  • Parker MO, Brock AJ, Walton RT, Brennan CH (2013) The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circ 7:63

    Google Scholar 

  • Picciotto MR, Zoli M (2008) Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Front Biosci 13:492–504

    Article  CAS  Google Scholar 

  • Pistillo F, Clementi F, Zoli M, Gotti C (2015) Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 124:1–27

    Article  CAS  Google Scholar 

  • Ponzoni L, Braida D, Pucci L, Andrea D, Fasoli F, Manfredi I, Papke RL, Stokes C, Cannazza G, Clementi F, Gotti C, Sala M (2014) The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology 231:4681–4693

    Article  CAS  Google Scholar 

  • Ponzoni L, Braida D, Sala M (2016a) Abuse potential of methylenedioxymethamphetamine (MDMA) and its derivatives in zebrafish: role of serotonin 5HT2-type receptors. Psychopharmacology 233:3031–3039

    Article  CAS  Google Scholar 

  • Ponzoni L, Sala M, Braida D (2016b) Ritanserin-sensitive receptors modulate the prosocial and the anxiolytic effect of MDMA derivatives, DOB and PMA, in zebrafish. Behav Brain Res 314:181–189

    Article  CAS  Google Scholar 

  • Prochaska JJ, Benowitz NL (2016) The past, present, and future of nicotine addiction therapy. Annu Rev Med 67:467–486

    Article  CAS  Google Scholar 

  • Radek RJ, Kohlhaas KL, Rueter LE, Mohler EG (2010) Treating the cognitive deficits of schizophrenia with alpha4beta2 neuronal nicotinic receptor agonists. Cur Pharm Des 16(3):309–322

    Article  CAS  Google Scholar 

  • Rollema H, Hajós M, Seymour PA, Kozak R, Majchrzak MJ, Guanowsky V, Horner WE, Chapin DS, Hoffmann WE, Johnson DE, McLean S, Freeman J, Williams KE (2009) Preclinical pharmacology of the alpha4beta2 nAChR partial agonist varenicline related to effects on reward, mood and cognition. Biochem Pharmacol 78:813–824

    Article  CAS  Google Scholar 

  • Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker GA, Rullmann M, Patt M, Luthardt J, Wagenknecht G, Hoepping A, Smits R, Franke A, Sattler B, Tiepolt S, Fischer S, Deuther-Conrad W, Hegerl U, Barthel H, Schönknecht P, Brust P (2018) Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer's dementia. Brain 141(6):1840–1854

    Article  Google Scholar 

  • Sala M, Braida D, Pucci L, Manfredi I, Marks MJ, Wageman CR, Grady SR, Loi B, Fucile S, Fasoli F, Zoli M, Tasso B, Sparatore F, Clementi F, Gotti C (2013) CC4, a dimer of cytisine, is a selective partial agonist at alpha4beta2/alpha6beta2 nAChR with improved selectivity for tobacco smoking cessation. Br J Pharmacol 168(4):835–849

  • Sison M, Gerlai R (2010) Associative learning in zebrafish (Danio rerio) in the plus maze. Behav Brain Res 207:99–104

    Article  Google Scholar 

  • Spence R, Jordan WC, Smith C (2006) Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio. Front Zool 3:5

    Article  Google Scholar 

  • Swain HA, Sigstad C, Scalzo FM (2004) Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26(6):725–729

    Article  CAS  Google Scholar 

  • Terry AV, Callahan PM (2019) Nicotinic acetylcholine receptor ligands, cognitive function, and preclinical approaches to drug discovery. Nicotine Tob Res 21(3):383–394

    Article  Google Scholar 

  • Wallace TL, Bertrand D (2013) Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opin Ther Targets 17(2):139–155

    Article  CAS  Google Scholar 

  • Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns 3(6):747–754

    Article  CAS  Google Scholar 

  • Zoli M, Pistillo F, Gotti C (2015) Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 96:302–11

Download references

Acknowledgements

We would like to thank Fondazione Zardi Gori for a grant to Luisa Ponzoni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Gotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All of the experiments followed the ARRIVE guidelines and were approved by the National Ethics Committee for the care and use of laboratory animals and the National Ministry of Health (Italian Government Decree N° 513/2018PR).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braida, D., Ponzoni, L., Moretti, M. et al. Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors. Psychopharmacology 237, 2317–2326 (2020). https://doi.org/10.1007/s00213-020-05536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05536-6

Keywords

Navigation