Abela AR, Chudasama Y (2013) Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur J Neurosci 37:640–647. https://doi.org/10.1111/ejn.12071
Article
PubMed
Google Scholar
Aberman JE, Ward SJ, Salamone JD (1998) Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav 61:341–348. https://doi.org/10.1016/S0091-3057(98)00112-9
CAS
Article
PubMed
Google Scholar
Adams CD, Dickinson A (1981) Instrumental responding following reinforcer devaluation. Q J Exp Psychol B 33:109–121. https://doi.org/10.1080/14640748108400816
Article
Google Scholar
Alsiö J, Nilsson SRO, Gastambide F, Wang RAH, Dam SA, Mar AC, Tricklebank M, Robbins TW (2015) The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study. Psychopharmacology 232:4017–4031. https://doi.org/10.1007/s00213-015-3963-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419. https://doi.org/10.1016/S0028-3908(98)00033-1
CAS
Article
PubMed
Google Scholar
Balleine BW, Dickinson A (2000) The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory. J Neurosci 20:8954–8964
CAS
Article
Google Scholar
Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, Robbins TW (2010) Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35:1290–1301. https://doi.org/10.1038/npp.2009.233
CAS
Article
PubMed
PubMed Central
Google Scholar
Barkus C, Feyder M, Graybeal C, Wright T, Wiedholz L, Izquierdo A, Kiselycznyk C, Schmitt W, Sanderson DJ, Rawlins JNP, Saksida LM, Bussey TJ, Sprengel R, Bannerman D, Holmes A (2012) Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62:1263–1272. https://doi.org/10.1016/j.neuropharm.2011.06.005
CAS
Article
PubMed
Google Scholar
Barlow RL, Alsiö J, Jupp B, Rabinovich R, Shrestha S, Roberts AC, Robbins TW, Dalley JW (2015) Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology 40:1619–1630. https://doi.org/10.1038/npp.2014.335
CAS
Article
PubMed
PubMed Central
Google Scholar
Bergstrom HC, Lipkin AM, Lieberman AG, Pinard CR, Gunduz-Cinar O, Brockway ET, Taylor WW, Nonaka M, Bukalo O, Wills TA, Rubio FJ, Li X, Pickens CL, Winder DG, Holmes A (2018) Dorsolateral striatum engagement interferes with early discrimination learning. Cell Rep 23:2264–2272. https://doi.org/10.1016/j.celrep.2018.04.081
CAS
Article
PubMed
PubMed Central
Google Scholar
Bertoux M, de Souza LC, Zamith P, Dubois B, Bourgeois-Gironde S (2015) Discounting of future rewards in behavioural variant frontotemporal dementia and Alzheimer’s disease. Neuropsychology 29:933–939. https://doi.org/10.1037/neu0000197
Article
PubMed
Google Scholar
Bickel WK (2015) Discounting of delayed rewards as an endophenotype. Biol Psychiatry 77:846–847. https://doi.org/10.1016/j.biopsych.2015.03.003
Article
PubMed
Google Scholar
Bismark AW, Thomas ML, Tarasenko M, Shiluk AL, Rackelmann SY, Young JW, Light GA (2018) Relationship between effortful motivation and neurocognition in schizophrenia. Schizophr Res 193:69–76. https://doi.org/10.1016/j.schres.2017.06.042
Article
PubMed
Google Scholar
Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33:2007–2019. https://doi.org/10.1038/sj.npp.1301584
CAS
Article
PubMed
Google Scholar
Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494. https://doi.org/10.1101/lm.78804
Article
PubMed
Google Scholar
Bouton ME, Woods AM, Todd TP (2014) Separation of time-based and trial-based accounts of the partial reinforcement extinction effect. Behav Process 101:23–31. https://doi.org/10.1016/j.beproc.2013.08.006
Article
Google Scholar
Bradshaw CM, Killeen PR (2012) A theory of behaviour on progressive ratio schedules, with applications in behavioural pharmacology. Psychopharmacology 222:549–564. https://doi.org/10.1007/s00213-012-2771-4
CAS
Article
PubMed
Google Scholar
Brigman JL, Feyder M, Saksida LM, Bussey TJ, Mishina M, Holmes A (2008) Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn Mem 15:50–54. https://doi.org/10.1101/lm.777308
Article
PubMed
PubMed Central
Google Scholar
Brigman JL, Mathur P, Harvey-White J, Izquierdo A, Saksida LM, Bussey TJ, Fox S, Deneris E, Murphy DL, Holmes A (2010) Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb Cortex 20:1955–1963. https://doi.org/10.1093/cercor/bhp266
Article
PubMed
Google Scholar
Brigman JL, Daut RA, Wright T, Gunduz-Cinar O, Graybeal C, Davis MI, Jiang Z, Saksida LM, Jinde S, Pease M, Bussey TJ, Lovinger DM, Nakazawa K, Holmes A (2013) GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci 16:1101–1110. https://doi.org/10.1038/nn.3457
CAS
Article
PubMed
PubMed Central
Google Scholar
Bussey TJ, Padain TL, Skillings EA, Winters BD, Morton AJ, Saksida LM (2008) The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn Mem 15:516–523. https://doi.org/10.1101/lm.987808
Article
PubMed
PubMed Central
Google Scholar
Cao B, Wang J, Zhang X, Yang X, Poon DCH, Jelfs B, Chan RHM, Wu JCY, Li Y (2016) Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat. Neurobiol Learn Mem 136:74–85. https://doi.org/10.1016/j.nlm.2016.09.015
Article
PubMed
Google Scholar
Cardinal RN (2006) Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw 19:1277–1301. https://doi.org/10.1016/j.neunet.2006.03.004
Article
PubMed
Google Scholar
Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology 152:362–375
CAS
Article
Google Scholar
Chamberlain SR, Sahakian BJ (2006) The neuropsychology of mood disorders. Curr Psychiatry Rep 8:458–463
Article
Google Scholar
Chase HW, Frank MJ, Michael A, Bullmore ET, Sahakian BJ, Robbins TW (2010) Approach and avoidance learning in patients with major depression and healthy controls: relation to anhedonia. Psychol Med 40:433–440. https://doi.org/10.1017/S0033291709990468
CAS
Article
PubMed
Google Scholar
Clarke HF, Dalley JW, Crofts HS et al (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880. https://doi.org/10.1126/science.1094987
CAS
Article
PubMed
Google Scholar
Clarke HF, Walker SC, Crofts HS et al (2005) Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25:532–538. https://doi.org/10.1523/JNEUROSCI.3690-04.2005
CAS
Article
PubMed
Google Scholar
Clarke HF, Walker SC, Dalley JW, Robbins T, Roberts A (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27. https://doi.org/10.1093/cercor/bhj120
CAS
Article
PubMed
Google Scholar
Clarke HF, Cardinal RN, Rygula R, Hong YT, Fryer TD, Sawiak SJ, Ferrari V, Cockcroft G, Aigbirhio FI, Robbins TW, Roberts AC (2014) Orbitofrontal dopamine depletion upregulates caudate dopamine and alters behavior via changes in reinforcement sensitivity. J Neurosci 34:7663–7676. https://doi.org/10.1523/JNEUROSCI.0718-14.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Cools R, Lewis SJG, Clark L, Barker RA, Robbins TW (2007) L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32:180–189. https://doi.org/10.1038/sj.npp.1301153
CAS
Article
PubMed
Google Scholar
Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72:389–395. https://doi.org/10.1016/j.biopsych.2012.02.024
Article
PubMed
PubMed Central
Google Scholar
Daw ND (2011) Trial-by-trial data analysis using computational models. In: Decision making, affect, and learning. Oxford University Press, Oxford, pp 3–38
Chapter
Google Scholar
Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15:603–616. https://doi.org/10.1016/S0893-6080(02)00052-7
Article
PubMed
Google Scholar
De Wit S, Corlett PR, Aitken MR et al (2009) Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J Neurosci 29:11330–11338. https://doi.org/10.1523/JNEUROSCI.1639-09.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Del Arco A, Park J, Wood J et al (2017) Adaptive encoding of outcome prediction by prefrontal cortex ensembles supports behavioral flexibility. J Neurosci 37:8363–8373. https://doi.org/10.1523/JNEUROSCI.0450-17.2017
Article
PubMed
PubMed Central
Google Scholar
Den Ouden HEM, Daw ND, Fernandez G et al (2013) Dissociable effects of dopamine and serotonin on reversal learning. Neuron 80:1090–1100. https://doi.org/10.1016/j.neuron.2013.08.030
CAS
Article
Google Scholar
DePoy L, Daut R, Brigman JL, MacPherson K, Crowley N, Gunduz-Cinar O, Pickens CL, Cinar R, Saksida LM, Kunos G, Lovinger DM, Bussey TJ, Camp MC, Holmes A (2013) Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci U S A 110:14783–14788. https://doi.org/10.1073/pnas.1308198110
Article
PubMed
PubMed Central
Google Scholar
Dowd EC, Frank MJ, Collins A, Gold JM, Barch DM (2016) Probabilistic reinforcement learning in patients with schizophrenia: relationships to anhedonia and Avolition. Biol Psychiatry Cogn Neurosci Neuroimaging 1:460–473. https://doi.org/10.1016/j.bpsc.2016.05.005
Article
PubMed
PubMed Central
Google Scholar
Eisenegger C, Naef M, Linssen A, Clark L, Gandamaneni PK, Müller U, Robbins TW (2014) Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology 39:2366–2375. https://doi.org/10.1038/npp.2014.84
CAS
Article
PubMed
PubMed Central
Google Scholar
Elliott R, Sahakian BJ, Herrod JJ, Robbins TW, Paykel ES (1997) Abnormal response to negative feedback in unipolar depression: evidence for a diagnosis specific impairment. J Neurol Neurosurg Psychiatry 63:74–82
CAS
Article
Google Scholar
Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161–170. https://doi.org/10.1007/s002130050121
CAS
Article
PubMed
Google Scholar
Evers EAT, Cools R, Clark L, van der Veen FM, Jolles J, Sahakian BJ, Robbins TW (2005) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30:1138–1147. https://doi.org/10.1038/sj.npp.1300663
CAS
Article
PubMed
Google Scholar
Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, Port RG, Hockemeyer J, Müller CE, Correa M, Salamone JD (2010) Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience 166(4):1056–1067
CAS
Article
Google Scholar
Finger EC, Mitchell DGV, Jones M, Blair RJR (2008) Dissociable roles of medial orbitofrontal cortex in human operant extinction learning. Neuroimage 43:748–755. https://doi.org/10.1016/j.neuroimage.2008.08.021
Article
PubMed
PubMed Central
Google Scholar
Frank MJ, Seeberger LC, O’reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940–1943. https://doi.org/10.1126/science.1102941
CAS
Article
PubMed
Google Scholar
Ghods-Sharifi S, St Onge JR, Floresco SB (2009) Fundamental contribution by the basolateral amygdala to different forms of decision making. J Neurosci 29:5251–5259. https://doi.org/10.1523/JNEUROSCI.0315-09.2009
CAS
Article
PubMed
Google Scholar
Gläscher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66:585–595. https://doi.org/10.1016/j.neuron.2010.04.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL, Holmes A (2011) Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci 14:1507–1509. https://doi.org/10.1038/nn.2954
CAS
Article
PubMed
PubMed Central
Google Scholar
Heath CJ, Bussey TJ, Saksida LM (2015) Motivational assessment of mice using the touchscreen operant testing system: effects of dopaminergic drugs. Psychopharmacology 232(21–22):4043–4057
CAS
Article
Google Scholar
Helms CM, Reeves JM, Mitchell SH (2006) Impact of strain and D-amphetamine on impulsivity (delay discounting) in inbred mice. Psychopharmacology 188:144–151. https://doi.org/10.1007/s00213-006-0478-0
CAS
Article
PubMed
Google Scholar
Hironaka N, Ikeda K, Sora I, Uhl GR, Niki H (2004) Food-reinforced operant behavior in dopamine transporter knockout mice: enhanced resistance to extinction. Ann N Y Acad Sci 1025(1):140–145
CAS
Article
Google Scholar
Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134(3483):943–944
CAS
Article
Google Scholar
Horner AE, McLaughlin CL, Afinowi NO et al (2017) Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous deletion of PSD-95. Eur J Neurosci 47:164–176. https://doi.org/10.1111/ejn.13792
Article
Google Scholar
Housden CR, O’Sullivan SS, Joyce EM et al (2010) Intact reward learning but elevated delay discounting in Parkinson’s disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology 35:2155–2164. https://doi.org/10.1038/npp.2010.84
Article
PubMed
PubMed Central
Google Scholar
Iigaya K, Fonseca MS, Murakami M, Mainen ZF, Dayan P (2018) An effect of serotonergic stimulation on learning rates for rewards apparent after long intertrial intervals. Nat Commun 9:2477. https://doi.org/10.1038/s41467-018-04840-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Ineichen C, Sigrist H, Spinelli S, Lesch KP, Sautter E, Seifritz E, Pryce CR (2012) Establishing a probabilistic reversal learning test in mice: evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin. Neuropharmacology 63:1012–1021. https://doi.org/10.1016/j.neuropharm.2012.07.025
CAS
Article
PubMed
Google Scholar
Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219:607–620. https://doi.org/10.1007/s00213-011-2579-7
CAS
Article
PubMed
Google Scholar
Jenni NL, Larkin JD, Floresco SB (2017) Prefrontal dopamine D1 and D2 receptors regulate dissociable aspects of decision making via distinct ventral striatal and amygdalar circuits. J Neurosci 37:6200–6213. https://doi.org/10.1523/JNEUROSCI.0030-17.2017
CAS
Article
PubMed
Google Scholar
Killeen PR (1994) Mathematical principles of reinforcement. Behav Brain Sci 17:105. https://doi.org/10.1017/S0140525X00033628
Article
Google Scholar
Klanker M, Sandberg T, Joosten R, Willuhn I, Feenstra M, Denys D (2015) Phasic dopamine release induced by positive feedback predicts individual differences in reversal learning. Neurobiol Learn Mem 125:135–145. https://doi.org/10.1016/j.nlm.2015.08.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Krebs CA, Anderson KG (2012) Preference reversals and effects of D-amphetamine on delay discounting in rats. Behav Pharmacol 23:228–240. https://doi.org/10.1097/FBP.0b013e32835342ed
CAS
Article
PubMed
Google Scholar
Kruse O, Tapia León I, Stark R, Klucken T (2017) Neural correlates of appetitive extinction in humans. Soc Cogn Affect Neurosci 12:106–115. https://doi.org/10.1093/scan/nsw157
Article
PubMed
Google Scholar
Lin X, Zhou H, Dong G, Du X (2015) Impaired risk evaluation in people with internet gaming disorder: fMRI evidence from a probability discounting task. Prog Neuro-Psychopharmacol Biol Psychiatry 56:142–148. https://doi.org/10.1016/j.pnpbp.2014.08.016
Article
Google Scholar
Madden GJ, Francisco MT, Brewer AT, Stein JS (2011) Delay discounting and gambling. Behav Process 87:43–49. https://doi.org/10.1016/j.beproc.2011.01.012
Article
Google Scholar
Marquardt K, Sigdel R, Brigman JL (2017) Touch-screen visual reversal learning is mediated by value encoding and signal propagation in the orbitofrontal cortex. Neurobiol Learn Mem 139:179–188. https://doi.org/10.1016/j.nlm.2017.01.006
Article
PubMed
PubMed Central
Google Scholar
Matias S, Lottem E, Dugué GP, Mainen ZF (2017) Activity patterns of serotonin neurons underlying cognitive flexibility. elife. https://doi.org/10.7554/eLife.20552
McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507. https://doi.org/10.1126/science.1100907
CAS
Article
PubMed
Google Scholar
Meck WH (1983) Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process 9:171–201
CAS
Article
Google Scholar
Miedl SF, Peters J, Büchel C (2012) Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry 69:177–186. https://doi.org/10.1001/archgenpsychiatry.2011.1552
Article
PubMed
Google Scholar
Miller L (1990) Neuropsychodynamics of alcoholism and addiction: personality, psychopathology, and cognitive style. J Subst Abus Treat 7:31–49
CAS
Article
Google Scholar
Mitchell SH (2014) Assessing delay discounting in mice. Curr Protoc Neurosci 66:Unit 8.30. https://doi.org/10.1002/0471142301.ns0830s66
Mueser KT, Douglas MS, Bellack AS, Morrison RL (1991) Assessment of enduring deficit and negative symptom subtypes in schizophrenia. Schizophr Bull 17:565–582
CAS
Article
Google Scholar
Murphy FC, Michael A, Robbins TW, Sahakian BJ (2003) Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med 33:455–467. https://doi.org/10.1017/S0033291702007018
CAS
Article
PubMed
Google Scholar
Murray GK, Cheng F, Clark L, Barnett JH, Blackwell AD, Fletcher PC, Robbins TW, Bullmore ET, Jones PB (2008) Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 34:848–855. https://doi.org/10.1093/schbul/sbn078
CAS
Article
PubMed
PubMed Central
Google Scholar
Nilsson SRO, Alsiö J, Somerville EM, Clifton PG (2015) The rat’s not for turning: dissociating the psychological components of cognitive inflexibility. Neurosci Biobehav Rev 56:1–14. https://doi.org/10.1016/j.neubiorev.2015.06.015
Article
PubMed
PubMed Central
Google Scholar
Nithianantharajah J, Komiyama NH, McKechanie A, Johnstone M, Blackwood DH, Clair DS, Emes RD, van de Lagemaat LN, Saksida LM, Bussey TJ, Grant SGN (2013) Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 16:16–24. https://doi.org/10.1038/nn.3276
CAS
Article
PubMed
Google Scholar
Nithianantharajah J, McKechanie AG, Stewart TJ et al (2015) Bridging the translational divide: identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Sci Rep 5:14613. https://doi.org/10.1038/srep14613
CAS
Article
PubMed
PubMed Central
Google Scholar
Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, Muller CE, Lopez-Cruz L, Correa M, Salamone JD (2013) Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 33(49):19120–19130
CAS
Article
Google Scholar
O’Hare JK, Li H, Kim N et al (2017) Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. elife. https://doi.org/10.7554/eLife.26231
Pardo M, López-Cruz L, San Miguel N et al (2015) Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists. Psychopharmacology 232:2377–2391. https://doi.org/10.1007/s00213-015-3872-7
CAS
Article
PubMed
Google Scholar
Phillips BU, Heath CJ, Ossowska Z, Bussey TJ, Saksida LM (2017) Optimisation of cognitive performance in rodent operant (touchscreen) testing: evaluation and effects of reinforcer strength. Learn Behav 45:252–262. https://doi.org/10.3758/s13420-017-0260-7
Article
PubMed
PubMed Central
Google Scholar
Phillips BU, Dewan S, Nilsson SRO, Robbins TW, Heath CJ, Saksida LM, Bussey TJ, Alsiö J (2018) Selective effects of 5-HT2C receptor modulation on performance of a novel valence-probe visual discrimination task and probabilistic reversal learning in mice. Psychopharmacology 235:2101–2111. https://doi.org/10.1007/s00213-018-4907-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Pulcu E, Trotter PD, Thomas EJ, McFarquhar M, Juhasz G, Sahakian BJ, Deakin JFW, Zahn R, Anderson IM, Elliott R (2014) Temporal discounting in major depressive disorder. Psychol Med 44:1825–1834. https://doi.org/10.1017/S0033291713002584
CAS
Article
PubMed
Google Scholar
Randall PA, Pardo M, Nunes EJ, Cruz LL, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD, Beeler JA (2012) Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLoS ONE 7(10):e47934
CAS
Article
Google Scholar
Robbins TW, Costa RM (2017) Habits. Curr Biol 27:R1200–R1206. https://doi.org/10.1016/j.cub.2017.09.060
CAS
Article
PubMed
Google Scholar
Rychlik M, Bollen E, Rygula R (2016) Ketamine decreases sensitivity of male rats to misleading negative feedback in a probabilistic reversal-learning task. Psychopharmacology 234:613–620. https://doi.org/10.1007/s00213-016-4497-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Salamone JD (1986) Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology 88:18–23. https://doi.org/10.1007/BF00310507
CAS
Article
PubMed
Google Scholar
Schebendach JE, Klein DA, Foltin RW, Devlin MJ, Walsh BT (2007) Relative reinforcing value of exercise in inpatients with anorexia nervosa: model development and pilot data. Int J Eat Disord 40:446–453. https://doi.org/10.1002/eat.20392
Article
PubMed
Google Scholar
Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599. https://doi.org/10.1126/science.275.5306.1593
CAS
Article
PubMed
Google Scholar
Sidman M, Stebbins WC (1954) Satiation effects under fixed-ratio schedules of reinforcement. J Comp Physiol Psychol 47:114–116
CAS
Article
Google Scholar
Sidorov MS, Krueger DD, Taylor M, Gisin E, Osterweil EK, Bear MF (2014) Extinction of an instrumental response: a cognitive behavioral assay in Fmr1 knockout mice. Genes Brain Behav 13:451–458. https://doi.org/10.1111/gbb.12137
CAS
Article
PubMed
PubMed Central
Google Scholar
Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, Kandel ER, Balsam PD (2011) Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry 69:928–935. https://doi.org/10.1016/j.biopsych.2011.01.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Soares S, Atallah BV, Paton JJ (2016) Midbrain dopamine neurons control judgment of time. Science 354:1273–1277. https://doi.org/10.1126/science.aah5234
CAS
Article
PubMed
Google Scholar
St Onge JR, Floresco SB (2009) Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology 34:681–697. https://doi.org/10.1038/npp.2008.121
CAS
Article
PubMed
Google Scholar
Stopper CM, Floresco SB (2011) Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn Affect Behav Neurosci 11:97–112. https://doi.org/10.3758/s13415-010-0015-9
Article
PubMed
Google Scholar
Strauss GP, Whearty KM, Morra LF, Sullivan SK, Ossenfort KL, Frost KH (2016) Avolition in schizophrenia is associated with reduced willingness to expend effort for reward on a progressive ratio task. Schizophr Res 170:198–204. https://doi.org/10.1016/j.schres.2015.12.006
Article
PubMed
Google Scholar
Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. IEEE Trans Neural Netw 9:1054–1054. https://doi.org/10.1109/TNN.1998.712192
Article
Google Scholar
Sweis BM, Thomas MJ, Redish AD (2018) Mice learn to avoid regret. PLoS Biol 16:e2005853. https://doi.org/10.1371/journal.pbio.2005853
CAS
Article
PubMed
PubMed Central
Google Scholar
Tanno T, Maguire DR, Henson C, France CP (2014) Effects of amphetamine and methylphenidate on delay discounting in rats: interactions with order of delay presentation. Psychopharmacology 231:85–95. https://doi.org/10.1007/s00213-013-3209-3
CAS
Article
PubMed
Google Scholar
Taylor JR, Robbins TW (1984) Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84:405–412. https://doi.org/10.1007/BF00555222
CAS
Article
PubMed
Google Scholar
Taylor Tavares JV, Clark L, Furey ML, Williams GB, Sahakian BJ, Drevets WC (2008) Neural basis of abnormal response to negative feedback in unmedicated mood disorders. Neuroimage 42:1118–1126. https://doi.org/10.1016/j.neuroimage.2008.05.049
Article
PubMed
PubMed Central
Google Scholar
Tobler PN, Dickinson A, Schultz W (2003) Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci 23:10402–10410
CAS
Article
Google Scholar
Tricomi E, Balleine BW, O’Doherty JP (2009) A specific role for posterior dorsolateral striatum in human habit learning. Eur J Neurosci 29:2225–2232. https://doi.org/10.1111/j.1460-9568.2009.06796.x
Article
PubMed
PubMed Central
Google Scholar
Verharen JPH, de Jong JW, Roelofs TJM, Huffels CFM, van Zessen R, Luijendijk MCM, Hamelink R, Willuhn I, den Ouden HEM, van der Plasse G, Adan RAH, Vanderschuren LJMJ (2018) A neuronal mechanism underlying decision-making deficits during hyperdopaminergic states. Nat Commun 9:731. https://doi.org/10.1038/s41467-018-03087-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Victoria LW, Gunning FM, Bress JN, Jackson D, Alexopoulos GS (2018) Reward learning impairment and avoidance and rumination responses at the end of engage therapy of late-life depression. Int J Geriatr Psychiatry 33:948–955. https://doi.org/10.1002/gps.4877
Article
PubMed
PubMed Central
Google Scholar
Vrieze E, Pizzagalli DA, Demyttenaere K, Hompes T, Sienaert P, de Boer P, Schmidt M, Claes S (2013) Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry 73:639–645. https://doi.org/10.1016/j.biopsych.2012.10.014
Article
PubMed
Google Scholar
Waltz JA, Frank MJ, Robinson BM, Gold JM (2007) Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry 62:756–764. https://doi.org/10.1016/j.biopsych.2006.09.042
Article
PubMed
PubMed Central
Google Scholar
Ward RD, Simpson EH, Kandel ER, Balsam PD (2011) Modeling motivational deficits in mouse models of schizophrenia: behavior analysis as a guide for neuroscience. Behav Process 87:149–156. https://doi.org/10.1016/j.beproc.2011.02.004
Article
Google Scholar
Weiner I, Bercovitz H, Lubow RE, Feldon J (1985) The abolition of the partial reinforcement extinction effect (PREE) by amphetamine. Psychopharmacology 86:318–323. https://doi.org/10.1007/BF00432221
CAS
Article
PubMed
Google Scholar
Wiehler A, Bromberg U, Peters J (2015) The role of prospection in steep temporal reward discounting in gambling addiction. Front Psychiatry 6:112. https://doi.org/10.3389/fpsyt.2015.00112
Article
PubMed
PubMed Central
Google Scholar
Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264
CAS
Article
Google Scholar
Yates JR, Batten SR, Bardo MT, Beckmann JS (2015) Role of ionotropic glutamate receptors in delay and probability discounting in the rat. Psychopharmacology 232:1187–1196. https://doi.org/10.1007/s00213-014-3747-3
CAS
Article
PubMed
Google Scholar
Yates JR, Prior NA, Chitwood MR, Day HA, Heidel JR, Hopkins SE, Muncie BT, Paradella-Bradley TA, Sestito AP, Vecchiola AN, Wells EE (2018) Effects of GluN2B-selective antagonists on delay and probability discounting in male rats: modulation by delay/probability presentation order. Exp Clin Psychopharmacol. https://doi.org/10.1037/pha0000216
Zalocusky KA, Ramakrishnan C, Lerner TN, Davidson TJ, Knutson B, Deisseroth K (2016) Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature 531:642–646. https://doi.org/10.1038/nature17400
CAS
Article
PubMed
PubMed Central
Google Scholar