Skip to main content

Advertisement

Log in

Vagus nerve stimulation as a tool for enhancing extinction in exposure-based therapies

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Rationale

Emotionally traumatic experiences can lead to maladaptive memories that are enduring and intrusive. The goal of exposure-based therapies is to extinguish conditioned fears through repeated, unreinforced exposures to reminders of traumatic events. The extinction of conditioned fear depends upon the consolidation of new memories made during exposure to reminders. An impairment in extinction recall, observed in certain patient populations, can interfere with progress in exposure-based therapies, and the drive to avoid thoughts and reminders of the trauma can undermine compliance and increase dropout rate. Effective adjuncts to exposure-based therapies should improve the consolidation and maintenance of the extinction memory or improve the tolerability of the therapy. Under stressful conditions, the vagus nerve responds to elevations in epinephrine and signals the brain to facilitate the storage of new memories while, as part of the parasympathetic nervous system, it slows the sympathetic response.

Objective

Here, we review studies relevant to fear extinction, describing the anatomical and functional characteristics of the vagus nerve and mechanisms of vagus nerve stimulation (VNS)-induced memory enhancement and plasticity.

Results

We propose that stimulation of the left cervical vagus nerve during exposure to conditioned cues signals the brain to store new memories just as epinephrine or emotional arousal would do, but bypasses the peripheral sympathetic “fight-or-flight” response.

Conclusions

In support of this hypothesis, we have found that VNS accelerates extinction and prevents reinstatement of conditioned fear in rats. Finally, we propose future studies targeting the optimization of stimulation parameters and the search for biomarkers of VNS effectiveness that may improve exposure therapy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aaronson ST, Carpenter LL, Conway CR, Reimherr FW, Lisanby SH, Schwartz TL, Moreno FA, Dunner DL, Lesem MD, Thompson PM, Husain M, Vine CJ, Banov MD, Bernstein LP, Lehman RB, Brannon GE, Keepers GA, O’Reardon JP, Rudolph RL, Bunker M (2013) Vagus nerve stimulation therapy randomized to different amounts of electrical charge for treatment-resistant depression: acute and chronic effects. Brain Stimul 6:631–640

    Article  PubMed  Google Scholar 

  • Abraham AD, Neve KA, Lattal KM (2014) Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 108:65–77

    Article  PubMed  Google Scholar 

  • Agostoni E, Chinnock JE, De Daly MB, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135:182–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akirav I, Raizel H, Maroun M (2006) Enhancement of conditioned fear extinction by infusion of the GABA(A) agonist muscimol into the rat prefrontal cortex and amygdala. Eur J Neurosci 23:758–764

    Article  PubMed  Google Scholar 

  • Alvarez-Dieppa AC, Griffin K, Cavalier S, McIntyre CK (2016) Vagus nerve stimulation enhances extinction of conditioned fear in rats and modulates arc protein, CaMKII, and GluN2B-containing NMDA receptors in the basolateral amygdala. Neural Plast 2016:4273280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson P, Jacobs C, Rothbaum BO (2004) Computer-supported cognitive behavioral treatment of anxiety disorders. J Clin Psychol 60:253–267

    Article  PubMed  Google Scholar 

  • Anlezark GM, Crow TJ, Greenway AP (1973) Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science 181:682–684

    Article  CAS  PubMed  Google Scholar 

  • Benjet C, Bromet E, Karam EG, Kessler RC, McLaughlin KA, Ruscio AM, Shahly V, Stein DJ, Petukhova M, Hill E, Alonso J, Atwoli L, Bunting B, Bruffaerts R, Caldas-de-Almeida JM, de Girolamo G, Florescu S, Gureje O, Huang Y, Lepine JP, Kawakami N, Kovess-Masfety V, Medina-Mora ME, Navarro-Mateu F, Piazza M, Posada-Villa J, Scott KM, Shalev A, Slade T, ten Have M, Torres Y, Viana MC, Zarkov Z, Koenen KC (2016) The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. Psychol Med 46:327–343

    Article  CAS  PubMed  Google Scholar 

  • Ben-Menachem E (2001) Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 18:415–418

    Article  CAS  PubMed  Google Scholar 

  • Bentz D, Michael T, de Quervain DJ, Wilhelm FH (2010) Enhancing exposure therapy for anxiety disorders with glucocorticoids: from basic mechanisms of emotional learning to clinical applications. J Anxiety Disord 24:223–230

    Article  PubMed  Google Scholar 

  • Berlau DJ, McGaugh JL (2006) Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol Learn Mem 86:123–132

    Article  CAS  PubMed  Google Scholar 

  • Borland MS, Vrana WA, Moreno NA, Fogarty EA, Buell EP, Sharma P, Engineer CT, Kilgard MP (2016) Cortical map plasticity as a function of vagus nerve stimulation intensity. Brain Stimul 9:117–123

    Article  CAS  PubMed  Google Scholar 

  • Boschen MJ, Neumann DL, Waters AM (2009) Relapse of successfully treated anxiety and fear: theoretical issues and recommendations for clinical practice. Aust N Z J Psychiatry 43:89–100

    Article  PubMed  Google Scholar 

  • Bouton ME (1993) Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull 114:80–99

    Article  CAS  PubMed  Google Scholar 

  • Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494

    Article  PubMed  Google Scholar 

  • Bouton ME, Bolles RC (1979) Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim B 5:368–378

    Article  CAS  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman RK (2018) Reduction of PTSD symptoms with pre-reactivation propranolol therapy: a randomized controlled trial. Am J Psychiatry 175:427–433

    Article  PubMed  Google Scholar 

  • Buchanan TW, Lovallo WR (2001) Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26:307–317

    Article  CAS  PubMed  Google Scholar 

  • Burger A, Verkuil B, van Diest I, van der Does W, Thayer J, Brosschot J (2016) The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Psychophysiology 53:S8–S8

    Article  Google Scholar 

  • Burger AM, Verkuil B, Fenlon H, Thijs L, Cools L, Miller HC, Vervliet B, Van Diest I (2017) Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav Res Ther 97:64–74

    Article  CAS  PubMed  Google Scholar 

  • Buschman HP, Storm CJ, Duncker DJ, Verdouw PD, van der Aa HE, van der Kemp P (2006) Heart rate control via vagus nerve stimulation. Neuromodulation 9:214–220

    Article  PubMed  Google Scholar 

  • Cahill L, Alkire MT (2003) Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol Learn Mem 79:194–198

    Article  CAS  PubMed  Google Scholar 

  • Castoro MA, Yoo PB, Hincapie JG, Hamann JJ, Ruble SB, Wolf PD, Grill WM (2011) Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 227:62–68

    Article  PubMed  Google Scholar 

  • Chen CC, Williams CL (2012) Interactions between epinephrine, ascending vagal fibers, and central noradrenergic systems in modulating memory for emotionally arousing events. Front Behav Neurosci 6:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chhatwal JP, Maguschak KA, Davis M, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Biol Psychiatry 57:113s–113s

    Article  CAS  Google Scholar 

  • Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ (2006) Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 9:870–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs JE, Alvarez-Dieppa AC, McIntyre CK, Kroener S (2015) Vagus nerve stimulation as a tool to induce plasticity in pathways relevant for extinction learning. J Vis Exp 102:e53032. https://doi.org/10.3791/53032

  • Clark KB, Krahl SE, Smith DC, Jensen RA (1995) Post-training unilateral vagal-stimulation enhances retention performance in the rat. Neurobiol Learn Mem 63:213–216

    Article  CAS  PubMed  Google Scholar 

  • Clark KB, Smith DC, Hassert DL, Browning RA, Naritoku DK, Jensen RA (1998) Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem 70:364–373

    Article  CAS  PubMed  Google Scholar 

  • Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA (1999) Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 2:94–98

    Article  CAS  PubMed  Google Scholar 

  • Clarke PR, Eccersley PS, Frisby JP, Thornton JA (1970) The amnesic effect of diazepam (valium). Br J Anaesth 42:690–697

    Article  CAS  PubMed  Google Scholar 

  • Corning JL (1884) Electrization of the sympathetic and pneumogastric nerves, with simultaneous bilateral compression of the carotids. The New York Medical Journal 39:4

    Google Scholar 

  • Davis M, Myers KM (2002) The role of glutamate and gamma-aminobutyric acid in fear extinction: clinical implications for exposure therapy. Biol Psychiatry 52:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Myers KM, Chhatwal J, Ressler KJ (2006a) Pharmacological treatments that facilitate extinction of fear: relevance to psychotherapy. NeuroRx 3:82–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M, Ressler K, Rothbaum BO, Richardson R (2006b) Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol Psychiatry 60:369–375

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GM, Schwartz PJ (2011) Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev 16:195–203

    Article  PubMed  Google Scholar 

  • de Kleine RA, Hendriks GJ, Kusters WJ, Broekman TG, van Minnen A (2012) A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biol Psychiatry 71:962–968

    Article  PubMed  CAS  Google Scholar 

  • De Taeye L, Vonck K, van Bochove M, Boon P, Van Roost D, Mollet L, Meurs A, De Herdt V, Carrette E, Dauwe I, Gadeyne S, van Mierlo P, Verguts T, Raedt R (2014) The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11:612–622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deschaux O, Zheng X, Lavigne J, Nachon O, Cleren C, Moreau JL, Garcia R (2013) Post-extinction fluoxetine treatment prevents stress-induced reemergence of extinguished fear. Psychopharmacology 225:209–216

    Article  CAS  PubMed  Google Scholar 

  • Detari L, Juhasz G, Kukorelli T (1983) Effect of stimulation of vagal and radial nerves on neuronal activity in the basal forebrain area of anaesthetized cats. Acta Physiol Hung 61:147–154

    CAS  PubMed  Google Scholar 

  • Diamond JM (1992) The third chimpanzee: the evolution and future of the human animal, 1st edn. Harper Collins, New York

    Google Scholar 

  • Dunnett SB (1985) Comparative effects of cholinergic drugs and lesions of nucleus basalis or fimbria-fornix on delayed matching in rats. Psychopharmacology 87:357–363

    Article  CAS  PubMed  Google Scholar 

  • Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, Borland MS, Kilgard MP (2011) Reversing pathological neural activity using targeted plasticity. Nature 470:101–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Englot DJ, Chang EF, Auguste KI (2011) Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg 115:1248–1255

    Article  PubMed  Google Scholar 

  • Englot DJ, Rolston JD, Wang DD, Hassnain KH, Gordon CM, Chang EF (2012) Efficacy of vagus nerve stimulation in posttraumatic versus nontraumatic epilepsy. J Neurosurg 117:970–977

    Article  PubMed  Google Scholar 

  • Evans DH, Murray JG (1954) Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J Anat 88:320–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falls WA, Miserendino MJ, Davis M (1992) Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12:854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, Kirkwood K, Aan Het Rot M, Lapidus KA, Wan LB, Iosifescu D, Charney DS (2014) Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71:681–688

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald PJ, Giustino TF, Seemann JR, Maren S (2015) Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proc Natl Acad Sci U S A 112:E3729–E3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley JO, DuBois F (1937) Quantitative studies of the vagus nerve in the cat—I. The ratio of sensory to motor fibers. J Comp Neurol 67:49–67

    Article  Google Scholar 

  • Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, Puligheddu M, Marrosu F, Biggio G (2007) Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 1179:28–34

    Article  CAS  PubMed  Google Scholar 

  • Friedman BH (2007) An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biol Psychol 74:185–199

    Article  PubMed  Google Scholar 

  • Furmaga H, Carreno FR, Frazer A (2012) Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One 7:e34844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez R, Mesches MH, McGaugh JL (1996) Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiol Learn Mem 66:253–257

    Article  CAS  PubMed  Google Scholar 

  • Ganzer PD, Darrow MJ, Meyers EC, Solorzano BR, Ruiz AD, Robertson NM, Adcock KS, James JT, Jeong HS, Becker AM, Goldberg MP, Pruitt DT, Hays SA, Kilgard MP, Rennaker RL (2018) Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury. Elife 7. https://doi.org/10.7554/elife.32058

  • Garcia HA, Kelley LP, Rentz TO, Lee S (2011) Pretreatment predictors of dropout from cognitive behavioral therapy for PTSD in Iraq and Afghanistan war veterans. Psychol Serv 8:1–11

    Article  Google Scholar 

  • George MS, Ward HE, Ninan PT, Pollack M, Nahas Z, Anderson B, Kose S, Howland RH, Goodman WK, Ballenger JC (2008) A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimulation 1:112–121

    Article  CAS  PubMed  Google Scholar 

  • Gold PE (2014) Regulation of memory—from the adrenal medulla to liver to astrocytes to neurons. Brain Res Bull 105:25–35

    Article  PubMed  Google Scholar 

  • Gold PE, Van Buskirk RB (1975) Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behav Biol 13:145–153

    Article  CAS  PubMed  Google Scholar 

  • Gold PE, van Buskirk RB, McGaugh JL (1975) Effects of hormones on time-dependent memory storage processes. Prog Brain Res 42:210–211

    Article  CAS  PubMed  Google Scholar 

  • Goode TD, Maren S (2014) Animal models of fear relapse. ILAR J 55:246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groves DA, Brown VJ (2005) Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29:493–500

    Article  PubMed  Google Scholar 

  • Guastella AJ, Richardson R, Lovibond PF, Rapee RM, Gaston JE, Mitchell P, Dadds MR (2008) A randomized controlled trial of D-cycloserine enhancement of exposure therapy for social anxiety disorder. Biol Psychiatry 63:544–549

    Article  CAS  PubMed  Google Scholar 

  • Hamlin RL, Smith CR (1968) Effects of vagal stimulation on S-A and A-V nodes. Am J Phys 215:560–568

    Article  CAS  Google Scholar 

  • Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, Henry TR, Collins SD, Vaughn BV, Gilmartin RC, Labar DR, Morris GL 3rd, Salinsky MC, Osorio I, Ristanovic RK, Labiner DM, Jones JC, Murphy JV, Ney GC, Wheless JW (1998) Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 51:48–55

    Article  CAS  PubMed  Google Scholar 

  • Hassert DL, Miyashita T, Williams CL (2004) The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav Neurosci 118:79–88

    Article  CAS  PubMed  Google Scholar 

  • Haubrich J, Nader K (2018) Memory reconsolidation. Curr Top Behav Neurosci 37:151–176

    Article  PubMed  Google Scholar 

  • Hauschildt M, Peters MJ, Moritz S, Jelinek L (2011) Heart rate variability in response to affective scenes in posttraumatic stress disorder. Biol Psychol 88:215–222

    Article  PubMed  Google Scholar 

  • Hays SA, Rennaker RL, Kilgard MP (2013) Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 207:275–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Hays SA, Khodaparast N, Hulsey DR, Ruiz A, Sloan AM, Rennaker RL 2nd, Kilgard MP (2014) Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45:3097–3100

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmann SG, Meuret AE, Smits JA, Simon NM, Pollack MH, Eisenmenger K, Shiekh M, Otto MW (2006) Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch Gen Psychiatry 63:298–304

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    Article  CAS  PubMed  Google Scholar 

  • James W (1890) The principles of psychology. H. Holt and Company, New York

    Google Scholar 

  • Joels M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: how does it work? Trends Cogn Sci 10:152–158

    Article  PubMed  Google Scholar 

  • Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agústsdóttir A, Antila H, Popova D, Akamine Y, Bahi A, Sullivan R, Hen R, Drew LJ, Castrén E (2011) Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 334:1731–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasamatsu T, Watabe K, Heggelund P, Scholler E (1985) Plasticity in cat visual cortex restored by electrical stimulation of the locus coeruleus. Neurosci Res 2:365–386

    Article  CAS  PubMed  Google Scholar 

  • Khodaparast N, Hays SA, Sloan AM, Hulsey DR, Ruiz A, Pantoja M, Rennaker RL 2nd, Kilgard MP (2013) Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol Dis 60:80–88

    Article  CAS  PubMed  Google Scholar 

  • Khodaparast N, Kilgard MP, Casavant R, Ruiz A, Qureshi I, Ganzer PD, Rennaker RL 2nd, Hays SA (2016) Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil Neural Repair 30:676–684

    Article  PubMed  Google Scholar 

  • Kilgard MP (2012) Harnessing plasticity to understand learning and treat disease. Trends Neurosci 35:715–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Kozel FA, Motes MA, Didehbani N, DeLaRosa B, Bass C, Schraufnagel CD, Jones P, Morgan CR, Spence JS, Kraut MA, Hart J (2018) Repetitive TMS to augment cognitive processing therapy in combat veterans of recent conflicts with PTSD: a randomized clinical trial. J Affect Disord 229:506–514

    Article  PubMed  Google Scholar 

  • Krahl SE (2012) Vagus nerve stimulation for epilepsy: a review of the peripheral mechanisms. Surg Neurol Int 3:S47–S52

    Article  PubMed  PubMed Central  Google Scholar 

  • Krahl SE, Clark KB (2012) Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg Neurol Int 3:S255–S259

    Article  PubMed  PubMed Central  Google Scholar 

  • Krahl SE, Clark KB, Smith DC, Browning RA (1998) Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 39:709–714

    Article  CAS  PubMed  Google Scholar 

  • Kroes MCW, Tona KD, den Ouden HEM, Vogel S, van Wingen GA, Fernandez G (2016) How administration of the beta-blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology 41:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • LaLumiere RT, McGaugh JL, McIntyre CK (2017) Emotional modulation of learning and memory: pharmacological implications. Pharmacol Rev 69:236–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledgerwood L (2003) D-Cycloserine facilitates extinction of conditioned fear as assessed by freezing in rats. Aust J Psychol 55:84–84

    Google Scholar 

  • Levy MN (1997) Neural control of cardiac function. Baillieres Clin Neurol 6:227–244

    CAS  PubMed  Google Scholar 

  • Liang KC, Juler RG, McGaugh JL (1986) Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res 368:125–133

    Article  CAS  PubMed  Google Scholar 

  • Litz BT, Salters-Pedneault K, Steenkamp MM, Hermos JA, Bryant RA, Otto MW, Hofmann SG (2012) A randomized placebo-controlled trial of D-cycloserine and exposure therapy for posttraumatic stress disorder. J Psychiatr Res 46:1184–1190

    Article  PubMed  Google Scholar 

  • Lucki I, Rickels K, Giesecke MA, Geller A (1987) Differential effects of the anxiolytic drugs, diazepam and buspirone, on memory function. Br J Clin Pharmacol 23:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manta S, Dong J, Debonnel G, Blier P (2009) Optimization of vagus nerve stimulation parameters using the firing activity of serotonin neurons in the rat dorsal raphe. Eur Neuropsychopharmacol 19:250–255

    Article  CAS  PubMed  Google Scholar 

  • Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591:2381–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14:417–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroun M, Kavushansky A, Holmes A, Wellman C, Motanis H (2012) Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex. PLoS One 7:e35853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mataix-Cols D, Fernandez de la Cruz L, Monzani B, Rosenfield D, Andersson E, Perez-Vigil A, Frumento P, de Kleine RA, Difede J, Dunlop BW, Farrell LJ, Geller D, Gerardi M, Guastella AJ, Hofmann SG, Hendriks GJ, Kushner MG, Lee FS, Lenze EJ, Levinson CA, McConnell H, Otto MW, Plag J, Pollack MH, Ressler KJ, Rodebaugh TL, Rothbaum BO, Scheeringa MS, Siewert-Siegmund A, Smits JAJ, Storch EA, Strohle A, Tart CD, Tolin DF, van Minnen A, Waters AM, Weems CF, Wilhelm S, Wyka K, Davis M, Ruck C, the DCSAC, Altemus M, Anderson P, Cukor J, Finck C, Geffken GR, Golfels F, Goodman WK, Gutner C, Heyman I, Jovanovic T, Lewin AB, McNamara JP, Murphy TK, Norrholm S, Thuras P (2017) D-Cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data. JAMA Psychiatry 74:501–510

    Article  PubMed  Google Scholar 

  • McReynolds JR, Donowho K, Abdi A, McGaugh JL, Roozendaal B, McIntyre CK (2010) Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions. Neurobiol Learn Mem 93:312–321

    Article  CAS  PubMed  Google Scholar 

  • Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL 2nd, Kilgard MP, Hays SA (2018) Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke 49:710–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Milad MR, Orr SP, Lasko NB, Chang YC, Rauch SL, Pitman RK (2008) Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiatr Res 42:515–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL (2009) Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 66:1075–1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Milad MR, Furtak SC, Greenberg JL, Keshaviah A, Im JJ, Falkenstein MJ, Jenike M, Rauch SL, Wilhelm S (2013) Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. JAMA Psychiatry 70:608–618

    Article  PubMed  Google Scholar 

  • Miyashita T, Williams CL (2006) Epinephrine administration increases neural impulses propagated along the vagus nerve: role of peripheral beta-adrenergic receptors. Neurobiol Learn Mem 85:116–124

    Article  CAS  PubMed  Google Scholar 

  • Mueller D, Porter JT, Quirk GJ (2008) Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci 28:369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najavits LM (2015) The problem of dropout from “gold standard” PTSD therapies. F1000Prime Rep 7:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols JA, Nichols AR, Smirnakis SM, Engineer ND, Kilgard MP, Atzori M (2011) Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 189:207–214

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Gonzalez IJ, Meruva VB, Callahan KA, Belfort BD, Ramanathan KR, Meyers E, Kilgard MP, Rennaker RL, McIntyre CK (2017) Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl Psychiatry 7:e1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena DF, Engineer ND, McIntyre CK (2013) Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry 73:1071–1077

    Article  PubMed  Google Scholar 

  • Pena DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S (2014) Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front Behav Neurosci 8:327. https://doi.org/10.3389/fnbeh.2014.00327

  • Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ (2010) Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328:1288–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peuker ET, Filler TJ (2002) The nerve supply of the human auricle. Clin Anat 15:35–37

    Article  PubMed  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    Article  CAS  PubMed  Google Scholar 

  • Porges SW (1992) Vagal tone: a physiologic marker of stress vulnerability. Pediatrics 90:498–504

    CAS  PubMed  Google Scholar 

  • Porges SW (2009) The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med 76(Suppl 2):S86–S90

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter BA, Khodaparast N, Fayyaz T, Cheung RJ, Ahmed SS, Vrana WA, Rennaker RL 2nd, Kilgard MP (2012) Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 22:2365–2374

    Article  PubMed  Google Scholar 

  • Powers MB, Smits JAJ, Otto MW, Sanders C, Emmelkamp PMG (2009) Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: a randomized placebo controlled trial of yohimbine augmentation. J Anxiety Disord 23:350–356

    Article  PubMed  Google Scholar 

  • Powers MB, Halpern JM, Ferenschak MP, Gillihan SJ, Foa EB (2010) A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin Psychol Rev 30:635–641

    Article  PubMed  Google Scholar 

  • Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, Hays SA, Kilgard MP, Rennaker RL (2016) Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma 33:871–879

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyne JM, Constans JI, Wiederhold MD, Gibson DP, Kimbrell T, Kramer TL, Pitcock JA, Han X, Williams DK, Chartrand D, Gevirtz RN, Spira J, Wiederhold BK, McCraty R, McCune TR (2016) Heart rate variability: pre-deployment predictor of post-deployment PTSD symptoms. Biol Psychol 121:91–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    Article  PubMed  Google Scholar 

  • Randall WC, Ardell JL, Becker DM (1985) Differential responses accompanying sequential stimulation and ablation of vagal branches to dog heart. Am J Phys 249:H133–H140

    CAS  Google Scholar 

  • Rescorla RA (1997) Spontaneous recovery after Pavlovian conditioning with multiple outcomes. Anim Learn Behav 25:99–107

    Article  Google Scholar 

  • Rescorla RA, Heth CD (1975) Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol-Anim B 104:88–96

    Article  Google Scholar 

  • Resick PA, Schnicke MK (1992) Cognitive processing therapy for sexual assault victims. J Consult Clin Psychol 60:748–756

    Article  CAS  PubMed  Google Scholar 

  • Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M (2004) Cognitive enhancers as adjuncts to psychotherapy—use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61:1136–1144

    Article  PubMed  Google Scholar 

  • Rodrigues H, Figueira I, Lopes A, Goncalves R, Mendlowicz MV, Coutinho ES, Ventura P (2014) Does D-cycloserine enhance exposure therapy for anxiety disorders in humans? A meta-analysis. PLoS One 9:e93519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Romaguera J, Sotres-Bayon F, Mueller D, Quirk GJ (2009) Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction. Biol Psychiatry 65:887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Romaguera J, Do Monte FH, Quirk GJ (2012) Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proc Natl Acad Sci U S A 109:8764–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA (2006) Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 1119:124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roozendaal B, Okuda S, Van der Zee EA, McGaugh JL (2006) Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A 103:6741–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ (2014) Hippocampal-prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology 39:2161–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothbaum BO, Davis M (2003) Applying learning principles to the treatment of post-trauma reactions. Roots of Mental Illness in Children 1008:112–121

  • Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F (2011) The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 42:288–296

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2004) Why zebras don’t get ulcers: a guide to stress, stress-related diseases and coping, 3rd edn. Times Books, New York

    Google Scholar 

  • Schevernels H, van Bochove ME, De Taeye L, Bombeke K, Vonck K, Van Roost D, De Herdt V, Santens P, Raedt R, Boehler CN (2016) The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav 64:171–179

    Article  PubMed  Google Scholar 

  • Schottenbauer MA, Glass CR, Arnkoff DB, Tendick V, Gray SH (2008) Nonresponse and dropout rates in outcome studies on PTSD: review and methodological considerations. Psychiatry 71:134–168

    Article  PubMed  Google Scholar 

  • Shah AP, Carreno FR, Wu H, Chung YA, Frazer A (2016) Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: comparison with desipramine. Neuroscience 322:273–286

    Article  CAS  PubMed  Google Scholar 

  • Shetake JA, Engineer ND, Vrana WA, Wolf JT, Kilgard MP (2012) Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex. Exp Neurol 233:342–349

    Article  PubMed  Google Scholar 

  • Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831–10836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538

    Article  PubMed  Google Scholar 

  • Simpson HB, Maher MIJ, Wang YJ, Bao YY, Foa EB, Franklin M (2011) Patient adherence predicts outcome from cognitive behavioral therapy in obsessive-compulsive disorder. J Consult Clin Psychol 79:247–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Soravia LM, Heinrichs M, Aerni A, Maroni C, Schelling G, Ehlert U, Roozendaal B, de Quervain DJ (2006) Glucocorticoids reduce phobic fear in humans. Proc Natl Acad Sci U S A 103:5585–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329–336

    Article  PubMed  Google Scholar 

  • Sun J, Lu Y, Huang Y, Wugeti N (2015) Unilateral vagus nerve stimulation improves ventricular autonomic nerve distribution and functional imbalance in a canine heart failure model. Int J Clin Exp Med 8:9334–9340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernandez G, Deisseroth K, Greene RW, Morris RG (2016) Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson GW, Levett JM, Miller SM, Hill MR, Meffert WG, Kolata RJ, Clem MF, Murphy DA, Armour JA (1998) Bradycardia induced by intravascular versus direct stimulation of the vagus nerve. Ann Thorac Surg 65:637–642

    Article  CAS  PubMed  Google Scholar 

  • Tuerk PW, Wangelin BC, Powers MB, Smits JAJ, Acierno R, Myers US, Orr SP, Foa EB, Hamner MB (2018) Augmenting treatment efficiency in exposure therapy for PTSD: a randomized double-blind placebo-controlled trial of yohimbine HCl. Cogn Behav Ther 47:351–371

    Article  PubMed  Google Scholar 

  • Usami K, Kawai K, Sonoo M, Saito N (2013) Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation. Brain Stimul 6:615–623

    Article  PubMed  Google Scholar 

  • Van Leusden JW, Sellaro R, Colzato LS (2015) Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? Front Psychol 6:102. https://doi.org/10.3389/fpsyg.2015.00102

  • Verkuil B, Burger AM, van Diest I, Vervliet B, van der Does W, Thayer JF, Brosschot JF (2017) Transcutaneous vagal nerve stimulation to promote the extinction of fear. Behav Res Ther 10:395

    Google Scholar 

  • Vervliet B, Craske MG, Hermans D (2013) Fear extinction and relapse: state of the art. Annu Rev Clin Psychol 9:215–248

    Article  PubMed  Google Scholar 

  • Walker DL, Ressler KJ, Lu KT, Davis M (2002) Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22:2343–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weil-Malherbe H, Axelrod J, Tomchick R (1959) Blood-brain barrier for adrenaline. Science 129:1226–1227

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm S, Buhlmann U, Tolin DF, Meunier SA, Pearlson GD, Reese HE, Cannistraro P, Jenike MA, Rauch SL (2008) Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. Am J Psychiatry 165:335–341

    Article  PubMed  Google Scholar 

  • Willis T (1664) Cerebri anatome: cui accessit nervorum descriptio et usus. Typis Tho. Roycroft, impensis Jo. Martyn & Ja. Allestry

  • Wilson MA, Fadel JR (2017) Cholinergic regulation of fear learning and extinction. J Neurosci Res 95:836–852

    Article  CAS  PubMed  Google Scholar 

  • Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TVP, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Silberstein SD (2016) Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Headache 56:71–78

    Article  PubMed  Google Scholar 

  • Zagon A (2001) Does the vagus nerve mediate the sixth sense? Trends Neurosci 24:671–673

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Smith DC, Jensen RA (2007) Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav 90:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was sponsored by the National Institutes of Mental Health (NIMH - MH10 MH105014) and the Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) ElectRx program under the auspices of Dr. Doug Weber and Eric Van Gieson through the Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-15-2-4057. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa K. McIntyre.

Ethics declarations

Conflict of interest

Lindsey J. Noble and Rimenez R Souza reported no biomedical financial interests or potential conflicts of interest. Christa K. McIntyre is an author of a patent entitled “Enhancing Fear Extinction using Vagus Nerve Stimulation.”

Additional information

This article belongs to a Special Issue on Psychopharmacology of Extinction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noble, L.J., Souza, R.R. & McIntyre, C.K. Vagus nerve stimulation as a tool for enhancing extinction in exposure-based therapies. Psychopharmacology 236, 355–367 (2019). https://doi.org/10.1007/s00213-018-4994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-4994-5

Keywords

Navigation