, Volume 235, Issue 4, pp 1055–1068 | Cite as

Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior

  • Natalia Gass
  • Robert Becker
  • Markus Sack
  • Adam J. Schwarz
  • Jonathan Reinwald
  • Alejandro Cosa-Linan
  • Lei Zheng
  • Christian Clemm von Hohenberg
  • Dragos Inta
  • Andreas Meyer-Lindenberg
  • Wolfgang Weber-Fahr
  • Peter Gass
  • Alexander Sartorius
Original Investigation



Evidence indicates that ketamine’s rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile.


We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action.


The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties.


Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect.


The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.


NMDA receptor Resting-state fMRI Graph theory Rat 



The authors thank Felix Hörner and Claudia Falfan-Melgoza for their excellent technical assistance. The authors thank Derek Buhl and Christopher L. Shaffer from Pfizer for providing data on CP-101,606 receptor occupancy values.


This work was supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft): DFG GA 2109/2-1 to N.G., as well as IN168/3-1 to D.I. and P.G. Additionally, grants to D.I. were provided by the Ingeborg Ständer Foundation and the Research Fund of the UPK Basel.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. Dr. Schwarz is an employee and shareholder of Eli Lilly and Company.

Supplementary material

213_2017_4823_MOESM1_ESM.doc (163 kb)
ESM 1 (DOC 163 kb)


  1. Albert DJ, Walsh ML, White R (1984) Rearing rats with mice prevents induction of mouse killing by lesions of the septum but not lesions of the medial hypothalamus or medial accumbens. Physiol Behav 32(1):143–145. CrossRefPubMedGoogle Scholar
  2. Baas JM, Milstein J, Donlevy M, Grillon C (2006) Brainstem correlates of defensive states in humans. Biol Psychiatry 59(7):588–593. CrossRefPubMedGoogle Scholar
  3. Becker R, Braun U, Schwarz AJ, Gass N, Schweiger JI, Weber-Fahr W, Schenker E, Spedding M, Clemm von Hohenberg C, Risterucci C, Zang Z, Grimm O, Tost H, Sartorius A, Meyer-Lindenberg A (2016) Species-conserved reconfigurations of brain network topology induced by ketamine. Transl Psychiatry 6:e786. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67(2):110–116. CrossRefPubMedGoogle Scholar
  5. Bewernick BH, Kayser S, Sturm V, Schlaepfer TE (2012) Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology 37:1975–1985. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brandao ML, Troncoso AC, de Souza Silva MA, Huston JP (2003) The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: empirical and conceptual considerations. Eur J Pharmacol 463(1-3):225–233. CrossRefPubMedGoogle Scholar
  7. Bruns A, Mueggler T, Kunnecke B, Risterucci C, Prinssen EP, Wettstein JG, von Kienlin M (2015) “Domain gauges”: a reference system for multivariate profiling of brain fMRI activation patterns induced by psychoactive drugs in rats. NeuroImage 112:70–85. [doi].CrossRefPubMedGoogle Scholar
  8. Capper-Loup C, Rebell D, Kaelin-Lang A (2009) Hemispheric lateralization of the corticostriatal glutamatergic system in the rat. J Neural Transm (Vienna) 116:1053–1057. DOI: 10.1007/s00702-009-0265-2, 9Google Scholar
  9. Chen VC, Shen CY, Liang SH, Li ZH, Tyan YS, Liao YT, Huang YC, Lee Y, McIntyre RS, Weng JC (2016) Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses. J Affect Disord 205:103–111. CrossRefPubMedGoogle Scholar
  10. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, Myers RM, Bunney WE Jr, Akil H, Watson SJ, Jones EG (2005) Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci U S A 102(43):15653–15658. CrossRefPubMedPubMedCentralGoogle Scholar
  11. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, Machado-Vieira R, Zarate CA Jr (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 71:1605–1611. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dogra S, Kumar A, Umrao D, Sahasrabuddhe AA, Yadav PN (2016) Chronic kappa opioid receptor activation modulates NR2B: implication in treatment resistant depression. Sci Rep 6(1):33401. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J, Hochberg H, Murrough J, Strohmayer E, Stern E, Silbersweig DA (2006) Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 163:1784–1790CrossRefPubMedGoogle Scholar
  14. Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, Yang J, Pittenger C, Sanacora G, Krystal JH, Parsey RV, Carson RE, DeLorenzo C (2017) Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [11C]ABP688 and PET imaging study in depression. Mol Psychiatry.
  15. Gass N, Schwarz AJ, Sartorius A, Schenker E, Risterucci C, Spedding M, Zheng L, Meyer-Lindenberg A, Weber-Fahr W (2014) Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacology 39(4):895–906. CrossRefPubMedGoogle Scholar
  16. Gass N, Becker R, Schwarz AJ, Weber-Fahr W, Clemm von Hohenberg C, Vollmayr B, Sartorius A (2016) Brain network reorganization differs in response to stress in rats genetically predisposed to depression and stress-resilient rats. Transl Psychiatry 6:e970. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69(2):164–170. CrossRefPubMedGoogle Scholar
  18. Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci 10(3):291–299PubMedPubMedCentralGoogle Scholar
  19. Gozzi A, Schwarz A, Crestan V, Bifone A (2008) Drug-anaesthetic interaction in phMRI: the case of the psychotomimetic agent phencyclidine. Magn Reson Imaging 26(7):999–1006. CrossRefPubMedGoogle Scholar
  20. Guo H, Cao X, Liu Z, Li H, Chen J, Zhang K (2012) Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. Neuroreport 23(17):1006–1011. CrossRefPubMedGoogle Scholar
  21. Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81(5):1084–1096. [doi].CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hasler G, Northoff G (2011) Discovering imaging endophenotypes for major depression. Mol Psychiatry 16(6):604–619. CrossRefPubMedGoogle Scholar
  23. Hodkinson DJ, de Groote C, McKie S, Deakin JF, Williams SR (2012) Differential effects of Anaesthesia on the phMRI response to acute ketamine challenge. Br J Med Med Res 2(3):373–385. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hou Z, Wang Z, Jiang W, Yin Y, Yue Y, Zhang Y, Song X, Yuan Y (2016) Divergent topological architecture of the default mode network as a pretreatment predictor of early antidepressant response in major depressive disorder. Sci Rep 6(1):39243. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Inta D, Trusel M, Riva MA, Sprengel R, Gass P (2009) Differential c-Fos induction by different NMDA receptor antagonists with antidepressant efficacy: potential clinical implications. Int J Neuropsychopharmacol 12(08):1133–1136. CrossRefPubMedGoogle Scholar
  26. Jimenez-Sanchez L, Campa L, Auberson YP, Adell A (2014) The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology 39(11):2673–2680. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I (2003) Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science 300(5621):990–994. CrossRefPubMedGoogle Scholar
  28. Kim SI (2013) Neuroscientific model of motivational process. Front Psychol 4:98. PubMedPubMedCentralGoogle Scholar
  29. Lally N, Nugent AC, Luckenbaugh DA, Ameli R, Roiser JP, Zarate CA (2014) Anti-anhedonic effect of ketamine and its neural correlates in treatment-resistant bipolar depression. Transl Psychiatry 4:e469. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lanfermann H, Schindler C, Jordan J, Krug N, Raab P (2015) Pharmacological MRI (phMRI) of the human central nervous system. Clin Neuroradiol 25(Suppl 2):259–266. CrossRefPubMedGoogle Scholar
  31. Levanen J, Makela ML, Scheinin H (1995) Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium. Anesthesiology 82(5):1117–1125. CrossRefPubMedGoogle Scholar
  32. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liebrenz M, Stohler R, Borgeat A (2009) Repeated intravenous ketamine therapy in a patient with treatment-resistant major depression. World J Biol Psychiatry 10(4-2):640–643. CrossRefPubMedGoogle Scholar
  34. Lord B, Wintmolders C, Langlois X, Nguyen L, Lovenberg T, Bonaventure P (2013) Comparison of the ex vivo receptor occupancy profile of ketamine to several NMDA receptor antagonists in mouse hippocampus. Eur J Pharmacol 715(1-3):21–25. CrossRefPubMedGoogle Scholar
  35. Luykx JJ, Laban KG, van den Heuvel MP, Boks MP, Mandl RC, Kahn RS, Bakker SC (2012) Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 36(1):198–205. CrossRefPubMedGoogle Scholar
  36. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63(4):349–352. CrossRefPubMedGoogle Scholar
  37. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660. CrossRefPubMedGoogle Scholar
  38. Meng C, Brandl F, Tahmasian M, Shao J, Manoliu A, Scherr M, Schwerthoffer D, Bauml J, Forstl H, Zimmer C, Wohlschlager AM, Riedl V, Sorg C (2014) Aberrant topology of striatum's connectivity is associated with the number of episodes in depression. Brain 137(2):598–609. CrossRefPubMedGoogle Scholar
  39. Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, Hall BJ (2014) GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife 3:e03581. PubMedPubMedCentralGoogle Scholar
  40. Mony L, Kew JN, Gunthorpe MJ, Paoletti P (2009) Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 157(8):1301–1317. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mutel V, Buchy D, Klingelschmidt A, Messer J, Bleuel Z, Kemp JA, Richards JG (1998) In vitro binding properties in rat brain of [3H]Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 70(5):2147–2155CrossRefPubMedGoogle Scholar
  42. Myers-Schulz B, Koenigs M (2012) Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry 17(2):132–141. CrossRefPubMedGoogle Scholar
  43. Nasrallah FA, Tan J, Chuang KH (2012) Pharmacological modulation of functional connectivity: alpha2-adrenergic receptor agonist alters synchrony but not neural activation. Neuroimage 60:436–446. CrossRefPubMedGoogle Scholar
  44. Nicholson KL, Mansbach RS, Menniti FS, Balster RL (2007) The phencyclidine-like discriminative stimulus effects and reinforcing properties of the NR2B-selective N-methyl-D-aspartate antagonist CP-101 606 in rats and rhesus monkeys. Behav Pharmacol 18(8):731–743. CrossRefPubMedGoogle Scholar
  45. Oikonomidis L, Santangelo AM, Shiba Y, Clarke FH, Robbins TW, Roberts AC (2017) A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey. Dev Neurobiol 77(3):328–353. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Park CH, Wang SM, Lee HK, Kweon YS, Lee CT, Kim KT, Kim YJ, Lee KU (2014) Affective state-dependent changes in the brain functional network in major depressive disorder. Soc Cogn Affect Neurosci 9(9):1404–1412. CrossRefPubMedGoogle Scholar
  47. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28(6):631–637. CrossRefPubMedGoogle Scholar
  48. Pujara M, Koenigs M (2014) Mechanisms of reward circuit dysfunction in psychiatric illness: prefrontal-striatal interactions. Neuroscientist 20(1):82–95. CrossRefPubMedGoogle Scholar
  49. Rosburg T, Kreitschmann-Andermahr I (2016) The effects of ketamine on the mismatch negativity (MMN) in humans—a meta-analysis. Clin Neurophysiol 127(2):1387–1394. CrossRefPubMedGoogle Scholar
  50. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069. CrossRefPubMedGoogle Scholar
  51. Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks. NeuroImage 56(4):2068–2079. CrossRefPubMedGoogle Scholar
  52. Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH (2014) Elucidating brain connectivity networks in major depressive disorder using classification-based scoring. Proc IEEE Int Symp Biomed Imaging 2014:246–249. PubMedPubMedCentralGoogle Scholar
  53. Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C, Merlo-Pich EV, Bifone A (2006) A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. NeuroImage 32(2):538–550. CrossRefPubMedGoogle Scholar
  54. Shaffer CL, Osgood SM, Smith DL, Liu J, Trapa PE (2014) Enhancing ketamine translational pharmacology via receptor occupancy normalization. Neuropharmacology 86:174–180. CrossRefPubMedGoogle Scholar
  55. Shinohara Y, Hirase H, Watanabe M, Itakura M, Takahashi M, Shigemoto R (2008) Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc Natl Acad Sci U S A 105(49):19498–19503. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shumake J, Poremba A, Edwards E, Gonzalez-Lima F (2000) Congenital helpless rats as a genetic model for cortex metabolism in depression. Neuroreport 11(17):3793–3798. CrossRefPubMedGoogle Scholar
  57. Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, Tadic A, Sienaert P, Wiegand F, Manji H, Drevets WC, Van Nueten L (2016) Intravenous Esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry 80(6):424–431. CrossRefPubMedGoogle Scholar
  58. Sivarao DV, Chen P, Yang Y, Li YW, Pieschl R, Ahlijanian MK (2014) NR2B antagonist CP-101,606 abolishes pitch-mediated deviance detection in awake rats. Front Psychiatry 5:96. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Talishinsky A, Rosen GD (2012) Systems genetics of the lateral septal nucleus in mouse: heritability, genetic control, and covariation with behavioral and morphological traits. PLoS One 7(8):e44236. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147. CrossRefPubMedGoogle Scholar
  61. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58. CrossRefPubMedGoogle Scholar
  62. Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11(9):642–651. CrossRefPubMedGoogle Scholar
  63. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30(5):1511–1523. CrossRefPubMedGoogle Scholar
  64. Weed MR, Bookbinder M, Polino J, Keavy D, Cardinal RN, Simmermacher-Mayer J, Cometa FN, King D, Thangathirupathy S, Macor JE, Bristow LJ (2016) Negative allosteric modulators selective for the NR2B subtype of the NMDA receptor impair cognition in multiple domains. Neuropsychopharmacology 41(2):568–577. CrossRefPubMedGoogle Scholar
  65. Williams KA, Magnuson M, Majeed W, LaConte SM, Peltier SJ, Hu X, Keilholz SD (2010) Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 28(7):995–1003. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xu T, Cullen KR, Mueller B, Schreiner MW, Lim KO, Schulz SC, Parhi KK (2016) Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI. Neuroimage Clin 11:302–315. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yang C, Ren Q, Qu Y, Zhang JC, Ma M, Dong C, Hashimoto K (2017) Mechanistic target of rapamycin-independent antidepressant effects of (R)-Ketamine in a social defeat stress model. Biol PsychiatryGoogle Scholar
  69. Ye M, Yang T, Qing P, Lei X, Qiu J, Liu G (2015) Changes of functional brain networks in major depressive disorder: a graph theoretical analysis of resting-state fMRI. PLoS One 10(9):e0133775. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Young CB, Chen T, Nusslock R, Keller J, Schatzberg AF, Menon V (2016) Anhedonia and general distress show dissociable ventromedial prefrontal cortex connectivity in major depressive disorder. Transl Psychiatry 6:e810. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864. CrossRefPubMedGoogle Scholar
  73. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342. CrossRefPubMedGoogle Scholar
  74. Zhang XH, Liu SS, Yi F, Zhuo M, Li BM (2013) Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats. Mol Brain 6:13-6606-6-13. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Natalia Gass
    • 1
  • Robert Becker
    • 1
  • Markus Sack
    • 1
  • Adam J. Schwarz
    • 2
    • 3
  • Jonathan Reinwald
    • 1
  • Alejandro Cosa-Linan
    • 4
  • Lei Zheng
    • 1
  • Christian Clemm von Hohenberg
    • 1
  • Dragos Inta
    • 5
  • Andreas Meyer-Lindenberg
    • 5
  • Wolfgang Weber-Fahr
    • 1
  • Peter Gass
    • 5
  • Alexander Sartorius
    • 1
    • 5
  1. 1.Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  2. 2.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA
  3. 3.Department of Radiology and Imaging SciencesIndiana UniversityIndianapolisUSA
  4. 4.Research Group In Silico Pharmacology, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  5. 5.Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg UniversityMannheimGermany

Personalised recommendations