Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17(6):639–654
CAS
PubMed
Google Scholar
Adler LE, Olincy A, Cawthra E, Hoffer M, Nagamoto HT, Amass L, Freedman R (2001) Reversal of diminished inhibitory sensory gating in cocaine addicts by a nicotinic cholinergic mechanism. Neuropsychopharmacology 24(6):671–679
CAS
Article
PubMed
Google Scholar
Ahnaou A, Biermans R, Drinkenburg WH (2016) Modulation of mGlu2 receptors, but not PDE10A inhibition normalizes pharmacologically-induced deviance in auditory evoked potentials and oscillations in conscious rats. PLoS One 11(1):e0147365
Article
PubMed
PubMed Central
Google Scholar
Ally BA, Jones GE, Cole JA, Budson AE (2006) Sensory gating in patients with Alzheimer’s disease and their biological children. Am J Alzheimers Dis Other Demen 21(6):439–447
Article
PubMed
Google Scholar
Bethke TD, Bohmer GM, Hermann R, Hauns B, Fux R, Morike K, David M, Knoerzer D, Wurst W, Gleiter CH (2007) Dose-proportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor. J Clin Pharmacol 47(1):26–36
CAS
Article
PubMed
Google Scholar
Blokland A, Prickaerts J, Van Duinen M, Sambeth A (2015) The use of EEG parameters as predictors of drug effects on cognition. Eur J Pharmacol 759:163–168
CAS
Article
PubMed
Google Scholar
Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psych 5:47
Google Scholar
De Bruin NM, Ellenbroek BA, Van Schaijk WJ, Cools AR, Coenen AM, Van Luijtelaar EL (2001) Sensory gating of auditory evoked potentials in rats: effects of repetitive stimulation and the interstimulus interval. Biol Psychol 55(3):195–213
Article
PubMed
Google Scholar
During S, Glenthoj BY, Andersen GS, Oranje B (2014) Effects of dopamine D2/D3 blockade on human sensory and sensorimotor gating in initially antipsychotic-naive, first-episode schizophrenia patients. Neuropsychopharmacology 39(13):3000–3008
CAS
Article
PubMed
PubMed Central
Google Scholar
Freedman R, Adler LE, Waldo MC, Pachtman E, Franks RD (1983) Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparison of medicated and drug-free patients. Biol Psychiatry 18(5):537–551
CAS
PubMed
Google Scholar
Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55(4):468–484
CAS
Article
PubMed
Google Scholar
Halene TB, Siegel SJ (2008) Antipsychotic-like properties of phosphodiesterase 4 inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) with auditory event-related potentials and prepulse inhibition of startle. J Pharmacol Exp Ther 326(1):230–239
CAS
Article
PubMed
Google Scholar
Heckman PR, Blokland A, Ramaekers J, Prickaerts J (2015) PDE and cognitive processing: beyond the memory domain. Neurobiol Learn Mem 119:108–122
CAS
Article
PubMed
Google Scholar
Heckman PR, Van Duinen MA, Bollen EP, Nishi A, Wennogle L, Blokland A, Prickaerts J (2016) Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: clinical implications. Int J Neuropsychopharmacol
Heckman PRA, Schweimer JV, Sharp T, Prickaerts J, Blokland A (2017) Phosphodiesterase 4 inhibition affects both the direct and indirect pathway: an electrophysiological study examining the tri-phasic response in the substantia nigra pars reticulata. Brain Struct Funct
Hershman KM, Freedman R, Bickford PC (1995) GABAB antagonists diminish the inhibitory gating of auditory response in the rat hippocampus. Neurosci Lett 190(2):133–136
CAS
Article
PubMed
Google Scholar
Jabaris SG, Sumathy H, Kumar RS, Narayanan S, Thanikachalam S, Babu CS (2015) Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats. Eur J Pharmacol 746:138–147
CAS
Article
PubMed
Google Scholar
Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajos M (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 7(1):68–83
CAS
Article
PubMed
PubMed Central
Google Scholar
Kleiman RJ, Chapin DS, Christoffersen C, Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajos M, Harms JF, Helal CJ, Hoffmann WE, Kocan GP, Majchrzak MJ, Mcginnis D, Mclean S, Menniti FS, Nelson F, Roof R, Schmidt AW, Seymour PA, Stephenson DT, Tingley FD, Vanase-Frawley M, Verhoest PR, Schmidt CJ (2012) Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther 341(2):396–409
CAS
Article
PubMed
Google Scholar
Klem, G.H., Luders, H.O., Jasper, H.H. and Elger, C. (1999). The ten-twenty electrode system of the international federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52: 3–6
Lahu G, Nassr N, Hunnemeyer A (2011) Pharmacokinetic evaluation of roflumilast. Expert Opin Drug Metab Toxicol 7(12):1577–1591
CAS
Article
PubMed
Google Scholar
Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59(6):367–374
CAS
Article
PubMed
Google Scholar
Light GA, Malaspina D, Geyer MA, Luber BM, Coleman EA, Sackeim HA, Braff DL (1999) Amphetamine disrupts P50 suppression in normal subjects. Biol Psychiatry 46(7):990–996
CAS
Article
PubMed
Google Scholar
Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129(1):101–107
CAS
Article
PubMed
Google Scholar
Micoulaud-Franchi JA, Vaillant F, Lopez R, Peri P, Baillif A, Brandejsky L, Steffen ML, Boyer L, Richieri R, Cermolacce M, Bioulac S, Aramaki M, Philip P, Lancon C, Vion-Dury J (2015) Sensory gating in adult with attention-deficit/hyperactivity disorder: event-evoked potential and perceptual experience reports comparisons with schizophrenia. Biol Psychol 107:16–23
Article
PubMed
Google Scholar
Nagamoto HT, Adler LE, Hea RA, Griffith JM, Mcrae KA, Freedman R (1996) Gating of auditory P50 in schizophrenics: unique effects of clozapine. Biol Psychiatry 40(3):181–188
CAS
Article
PubMed
Google Scholar
Nagy, D., Tingley, F.D., 3rd, Stoiljkovic, M. and Hajos, M. (2015). Application of neurophysiological biomarkers for Huntington’s disease: evaluating a phosphodiesterase 9A inhibitor. Exp Neurol 263: 122–131
Potter D, Summerfelt A, Gold J, Buchanan RW (2006) Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr Bull 32(4):692–700
Article
PubMed
PubMed Central
Google Scholar
Redrobe JP, Jorgensen M, Christoffersen CT, Montezinho LP, Bastlund JF, Carnerup M, Bundgaard C, Lerdrup L, Plath N (2014) In vitro and in vivo characterisation of Lu AF64280, a novel, brain penetrant phosphodiesterase (PDE) 2A inhibitor: potential relevance to cognitive deficits in schizophrenia. Psychopharmacology
Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology 202(1–3):419–443
CAS
Article
PubMed
Google Scholar
Reneerkens OA, Sambeth A, Blokland A, Prickaerts J (2013a) PDE2 and PDE10, but not PDE5, inhibition affect basic auditory information processing in rats. Behav Brain Res 250:251–256
CAS
Article
PubMed
Google Scholar
Reneerkens OA, Sambeth A, Van Duinen MA, Blokland A, Steinbusch HW, Prickaerts J (2013b) The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology 225(2):303–312
CAS
Article
PubMed
Google Scholar
Schmidt, C.J., Chapin, D.S., Cianfrogna, J., Corman, M.L., Hajos, M., Harms, J.F., Hoffman, W.E., Lebel, L.A., Mccarthy, S.A., Nelson, F.R., Proulx-Lafrance, C., Majchrzak, M.J., Ramirez, A.D., Schmidt, K., Seymour, P.A., Siuciak, J.A., Tingley, F.D., 3rd, Williams, R.D., Verhoest, P.R. and Menniti, F.S. (2008). Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325(2): 681–690
Siegel SJ, Maxwell CR, Majumdar S, Trief DF, Lerman C, Gur RE, Kanes SJ, Liang Y (2005) Monoamine reuptake inhibition and nicotine receptor antagonism reduce amplitude and gating of auditory evoked potentials. Neuroscience 133(3):729–738
CAS
Article
PubMed
Google Scholar
Smucny J, Stevens KE, Olincy A, Tregellas JR (2015) Translational utility of rodent hippocampal auditory gating in schizophrenia research: a review and evaluation. Transl Psychiatry 5:e587
CAS
Article
PubMed
PubMed Central
Google Scholar
Vanmierlo T, Creemers P, Akkerman S, Van Duinen M, Sambeth A, De Vry J, Uz T, Blokland A, Prickaerts J (2016) The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses. Behav Brain Res 303:26–33
CAS
Article
PubMed
Google Scholar
Wan L, Crawford HJ, Boutros N (2006) P50 sensory gating: impact of high vs. low schizotypal personality and smoking status. Int J Psychophysiol 60(1):1–9
Article
PubMed
Google Scholar
Wan L, Crawford HJ, Boutros N (2007) Early and late auditory sensory gating: moderating influences from schizotypal personality, tobacco smoking status, and acute smoking. Psychiatry Res 151(1–2):11–20
Article
PubMed
Google Scholar
Witten L, Bastlund JF, Glenthoj BY, Bundgaard C, Steiniger-Brach B, Mork A, Oranje B (2016) Comparing pharmacological modulation of sensory gating in healthy humans and rats: the effects of reboxetine and haloperidol. Neuropsychopharmacology 41(2):638–645
CAS
Article
PubMed
Google Scholar
Yadon CA, Bugg JM, Kisley MA, Davalos DB (2009) P50 sensory gating is related to performance on select tasks of cognitive inhibition. Cogn Affect Behav Neurosci 9(4):448–458
Article
PubMed
PubMed Central
Google Scholar
Young JW, Geyer MA (2013) Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 86(8):1122–1132
CAS
Article
PubMed
PubMed Central
Google Scholar