Skip to main content
Log in

Targeting the subthalamic nucleus in a preclinical model of alcohol use disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

The subthalamic nucleus (STN) has only recently been considered to have a role in reward processing. In rats, inactivation of the STN by lesion or high-frequency stimulation (HFS) decreases motivation for cocaine but increases motivation for sucrose. For ethanol, the effect of STN lesion depends on the individual’s baseline intake; decreasing motivation for ethanol in rats with lower ethanol intake, while increasing motivation for ethanol in rats with higher—but still limited—ethanol intake. However, the involvement of the STN in behaviour more closely resembling some aspects of alcohol use disorder has not been assessed. This study aimed to determine the effect of STN lesions on the escalation of ethanol intake, subsequent increases in the motivation to “work” for ethanol and the choice of ethanol over a non-drug alternative.

Results

We found that STN lesion prevented increases in ethanol intake observed during intermittent ethanol access and after a long period of ethanol privation. STN lesion also decreased the motivation to work for ethanol after escalated intake. Surprisingly, STN lesion increased the choice of alcohol over saccharin. This was associated with a blunting of the hedonic responses to the taste of the reinforcement alternatives.

Conclusion

These results evidence the involvement of the STN in different ethanol-motivated behaviours and therefore position the STN as an interesting target for the treatment of alcohol use disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed SH (2010) Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci Biobehav Rev 35(2):172–184

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington

  • Barichella M, Marczewska AM, Mariani C, Landi A, Vairo A, Pezzoli G (2003) Body weight gain rate in patients with Parkinson's disease and deep brain stimulation. Mov Disord 18:1337–1340

    Article  PubMed  Google Scholar 

  • Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9(10):2086–2099

    Article  CAS  PubMed  Google Scholar 

  • Baunez C, Dias C, Cador M, Amalric M (2005) The subthalamic nucleus exerts opposite control on cocaine and natural rewards. Nat Neurosci 8:484–489

    CAS  PubMed  Google Scholar 

  • Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ (2006) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288

    Article  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) The connections of the medial part of the subthalamic nucleus in the rat: evidence for a parallel organization. In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Plenum, New York, pp 89–98

    Chapter  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Everitt BJ (2004) Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr Opin Neurobiol 14:156–162

    Article  CAS  PubMed  Google Scholar 

  • Carnicella S, Ron D, Barak S (2014) Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol 48:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras M, Ceric F, Torrealba F (2007) Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318:655–658

    Article  CAS  PubMed  Google Scholar 

  • Damasio A.R., 2000. The feeling of what happens: body and emotion in the making of consciousness. Harcourt; New York.

    Google Scholar 

  • Eusebio A, Witjas T, Cohen J et al (2013) Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 84:868–874

    Article  PubMed  Google Scholar 

  • Gentil M, Garcia-Ruiz P, Pollak P, Benabid AL (2000) Effect of bilateral deep-brain stimulation on oral control of patients with parkinsonism. Eur Neurol 44(3):147–152

    Article  CAS  PubMed  Google Scholar 

  • Guercio LA, Schmidt HD, Pierce RC (2014) Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav Brain Res 281:125–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopf FW, Chang SJ, Sparta DR, Bowers MS, Bonci A (2010) Motivation for alcohol becomes resistant to quinine adulteration after 3 to 4 months of intermittent alcohol self-administration. Alcohol Clin Exp Res 34(9):1565–1573

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiefer SW, Dopp JM (1989) Taste reactivity to alcohol in rats. Behav Neurosci 103(6):1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O'Dell LE, Parsons LH, Sanna PP (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 27:739–749

    Article  CAS  PubMed  Google Scholar 

  • Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33:634–642

    Article  PubMed  Google Scholar 

  • Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS One 2(8):e698

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenoir M, Cantin L, Vanhille N, Serre F, Ahmed SH (2013) Extended heroin access increases heroin choices over a potent nondrug alternative. Neuropsychopharmacology 38:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lévêque M, Carron R, Régis JM (2013) Radiosurgery for the treatment of psychiatric disorders: a review. World Neurosurg 80(3–4):S32.e1–S32.e9

    Google Scholar 

  • Lhommee E, Klinger H, Thobois S et al (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135:1463–1477

    Article  PubMed  Google Scholar 

  • Li N, Wang J, Wang XL, Chang CW, Ge SN, Gao L, Wu HM, Zhao HK, Geng N, Gao GD (2012) Nucleus accumbens surgery for addiction. World Neurosurg 80(3–4):S28.e9–S28.19

    Google Scholar 

  • Limousin P, Pollak P, Benazzouz A et al (1995) Effect of Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95

    Article  CAS  PubMed  Google Scholar 

  • Mallet L, Mesnage V, Houeto JL et al (2002) Compulsions, Parkinson's disease, and stimulation. Lancet 360:1302–1304

    Article  PubMed  Google Scholar 

  • Mallet L, Polosan M, Jaafari N et al (2008) Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N Engl J Med 359:2121–2134

    Article  CAS  PubMed  Google Scholar 

  • McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27:12601–12610

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Menalled L, Chesselet MF (2005) Behavioral responses to injections of muscimol into the subthalamic nucleus: temporal changes after nigrostriatal lesions. Neuroscience 131(3):769–778

    Article  CAS  PubMed  Google Scholar 

  • Morrison SE, Bamkole MA, Nicola SM (2015) Sign tracking, but not goal tracking, is resistant to outcome devaluation. Front Neurosci 9:468

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller UJ, Sturm V, Voges J et al (2009) Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 42:288–291

    Article  PubMed  Google Scholar 

  • Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic, San Diego

    Google Scholar 

  • Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, Cambridge

  • Pelloux Y, Baunez C (2013) Deep brain stimulation for addiction: why the subthalamic nucleus should be favoured. Curr Opin Neurobiol 23:713–720

    Article  CAS  PubMed  Google Scholar 

  • Pelloux Y, Meffre J, Giorla E, Baunez C (2014) The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Front Behav Neurosci 5(8):414

    Google Scholar 

  • Péron J, Frühholz S, Vérin M, Grandjean D (2013) Subthalamic nucleus: a key structure for emotional component synchronization in humans. Neurosci Biobehav Rev 37:358–373

    Article  PubMed  Google Scholar 

  • Richter CP (1940) Alcohol as food. Quarterly Journal of Studies on Alcoholism 1:650–661

    Google Scholar 

  • Roitman MF, Wheeler RA, Wightman RM, Carelli RM (2008) Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci 11:1376–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouaud T, Lardeux S, Panayotis N et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci 107:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Simms JA, Steensland P, Medina B et al (2008) Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res 32:1816–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair JD, Senter RJ (1968) Development of an alcohol-deprivation effect in rats. Q J Stud Alcohol 29:863–867

    CAS  PubMed  Google Scholar 

  • Spoelder M, Hesseling P1, Baars AM, Lozeman-van't Klooster JG, Rotte MD, Vanderschuren LJ, Lesscher HM (2015) Individual variation in alcohol intake predicts reinforcement, motivation, and compulsive alcohol use in rats. Alcohol Clin Exp Res 39(12):2427–2437

    Article  CAS  PubMed  Google Scholar 

  • Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF (2017) Dysregulation of brain stress systems mediates compulsive alcohol drinking. Current Opinion in Behavioral Sciences 13:85–90

    Article  PubMed  Google Scholar 

  • Van der Plasse G, Schrama R, van Seters SP et al (2012) Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One 7:e33455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade CL, Kallupi M, Hernandez DO, Breysse E, de Guglielmo G, Crawford E, Koob GF, Schweitzer P, Baunez C, George O (2017) High-frequency stimulation of the subthalamic nucleus blocks compulsive-like re-escalation of heroin taking in rats. Neuropsychopharmacology. doi:10.1038/npp.2016.270

  • Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29:203–210

    Article  CAS  PubMed  Google Scholar 

  • Witjas T, Baunez C, Henry JM et al (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20:1052–1055

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by Centre National de la Recherche Scientifique, Aix-Marseille Université, Institut de Recherche et d’Etude sur les Boissons, Agence Nationale de la Recherche (Grant ANR-09-MNPS-028-01), ANR Grant 2010-NEUR-005-01 in the framework of the ERA-Net NEURON), Fondation pour la Recherche Medicale (DPA20140629789). CB and YP declare having no competing financial interests.

The authors would like to thank Brendan Tunstall for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Pelloux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelloux, Y., Baunez, C. Targeting the subthalamic nucleus in a preclinical model of alcohol use disorder. Psychopharmacology 234, 2127–2137 (2017). https://doi.org/10.1007/s00213-017-4618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4618-5

Keywords

Navigation