Skip to main content

Advertisement

Log in

The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Recently, an increasing number of emergency cases due to a novel ketamine-like drug, methoxetamine (MXE), were reported in several countries. However, very little is known about the neuropsychopharmacological and reinforcing profile of this compound.

Objectives

Our study aims to investigate the effects of MXE on self-administration (SA) behaviour in comparison to ketamine and on dopaminergic transmission.

Methods

A SA substitution study was performed in male rats trained to intravenously (IV) self-administer ketamine. At responding stability, rats were exposed to sequential phases of MXE substitution at different dosages (starting from 0.5 and then decreasing to 0.25 and 0.125 mg/kg). Standard electrophysiological techniques were used to record changes in firing activities of ventral tegmental area (VTA) dopamine neurons projecting to the nucleus accumbens (NAc) shell after acute injection of cumulative doses of MXE (0.031–0.5 mg/kg IV). Finally, in vivo microdialysis was performed in freely moving rats to evaluate the effect of acute MXE administration (0.125, 0.25 and 0.5 mg/kg IV) on dopamine release in the NAc shell.

Results

MXE 0.125 and 0.25 mg/kg, but not 0.5 mg/kg, substituted for ketamine SA. MXE also induced a dose-dependent stimulation of firing rate (p < 0.0001) and burst firing (p < 0.05) of NAc-projecting VTA dopamine neurons. Consistently, MXE significantly (p < 0.05) increased dopamine extracellular levels in the NAc shell at 0.5 and 0.25 mg/kg with different time onsets, i.e. at 40 and 100 min, respectively.

Conclusions

This study, while confirming the reinforcing effects of MXE, highlights an electrophysiological and neurochemical profile predictive of its addictive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamowicz P, Zuba D (2015) Fatal intoxication with methoxetamine. J Forensic Sci 60:S264–S268. doi:10.1111/1556-4029.12594

    Article  CAS  PubMed  Google Scholar 

  • Advisory Council on the Misuse of Drugs (ACMD) (2012) Methoxetamine report. https://www.403gov.uk/government/publications/advisory-council-on-the-misuse-of-drugs-acmd-404 methoxetamine-report-2012, 2012 [Accessed July, 2015].

  • Ator NA, Griffiths RR (2003) Principles of drug abuse liability assessment in laboratory animals. Drug Alcohol Depend 70:S55–S72

    Article  CAS  PubMed  Google Scholar 

  • Ault DT, Werling LL (1999) Phencyclidine and dizocilpine modulate dopamine release from rat nucleus accumbens via sigma receptors. Eur J Pharmacol 386:145–153

    Article  CAS  PubMed  Google Scholar 

  • Balster RL, Bigelow GE (2003) Guidelines and methodological reviews concerning drug abuse liability assessment. Drug Alcohol Depend 70:S13–S40

    Article  PubMed  Google Scholar 

  • Bassareo V, Di Chiara G (1999) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89:637–641

    Article  CAS  PubMed  Google Scholar 

  • Belujon P, Grace AA (2014) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76:927–936. doi:10.1016/j.biopsych.2014.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botanas CJ, de la Peña JB, Dela Peña IJ, Tampus R, Yoon R, Kim HJ, Lee YS, Jang CG, Cheong JH (2015) Methoxetamine, a ketamine derivative, produced conditioned place preference and was self-administered by rats: evidence of its abuse potential. Pharmacol Biochem Behav 133:31–36. doi:10.1016/j.pbb.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  • Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23:1848–1852

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall J, Morrison CH, Howes SR, Robbins TW, Everitt BJ (2002) Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci 116:553–567

    Article  PubMed  Google Scholar 

  • Chiamulera C, Armani F, Mutti A, Fattore L (2016) The ketamine analogue methoxetamine generalizes to ketamine discriminative stimulus in rats. Behav Pharmacol 21(2-3 Spec Issue):204–210

    Article  Google Scholar 

  • Chiappini S, Claridge H, Corkery JM, Goodair C, Loi B, Schifano F (2015) Methoxetamine-related deaths in the UK: an overview. Hum Psychopharmacol 30:244–248. doi:10.1002/hup.2422

    Article  PubMed  Google Scholar 

  • Collins GT, Woods JH (2007) Drug and reinforcement history as determinants of the response-maintaining effects of quinpirole in the rat. J Pharmacol Exp Ther 323:599–605. doi:10.1124/jpet.107.123042

    Article  CAS  PubMed  Google Scholar 

  • Corazza O, Schifano F, Simonato P, Fergus S et al (2012) Phenomenon of new drugs on the Internet: the case of ketamine derivative methoxetamine. Hum Psychopharmacol 27:145–149. doi:10.1002/hup.1242

    Article  CAS  PubMed  Google Scholar 

  • Corazza O, Assi S, Schifano F (2013) From “Special K” to “Special M”: the evolution of the recreational use of ketamine and methoxetamine. CNS Neurosci Ther 19:454–460. doi:10.1111/cns.12063

    Article  CAS  PubMed  Google Scholar 

  • CPMP (2000), Position paper on selective serotonin reuptake inhibitors (SSRIs) and dependency/withdrawal reactions, 2000.

  • CPMP (2002) Note for guidance on clinical investigation of medicinal products in the treatment of depression, 2002.

  • De Luca MT, Badiani A (2011) Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacology 214:549–556. doi:10.1007/s00213-010-2062-x

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • EMEA (2006) Guideline on the non-clinical investigation of the dependence potential of medicinal products, 2006.

  • Erhardt S, Engberg G (2002) Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand 175:45–53

    Article  CAS  PubMed  Google Scholar 

  • European Monitoring Centre for Drugs and Drug Addiction-Europol (EMCDDA), Europol Joint Report on a new psychoactive substance: methoxetamine (2-(3-methoxyphenyl)-2-(ethylamino)cyclohexanone), 2014.

  • Fadda P, Scherma M, Fresu A, Collu M, Fratta W (2003) Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse Oct 50(1):1–6

  • French ED (1997) delta9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci Lett 226:159–162

    Article  CAS  PubMed  Google Scholar 

  • French ED, Ceci A (1990) Non-competitive N-methyl-D-aspartate antagonists are potent activators of ventral tegmental A10 dopamine neurons. Neurosci Lett 119:159–162

    Article  CAS  PubMed  Google Scholar 

  • Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341:39–44

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identification and characterization. Neuroscience 10:301–315

    Article  CAS  PubMed  Google Scholar 

  • Green SM, Sherwin TS (2005) Incidence and severity of recovery agitation after ketamine sedation in young adults. Am J Emerg Med 23:142–144

    Article  PubMed  Google Scholar 

  • Hancock PJ, Stamford JA (1999) Stereospecific effects of ketamine on dopamine efflux and uptake in the rat nucleus accumbens. Br J Anaesth 82(4):603–608. doi:10.1093/bja/82.4.603

  • Hofer KE, Grager B, Müller DM, Rauber-Lüthy C, Kupferschmidt H, Rentsch KM, Ceschi A (2012) Ketamine-like effects after recreational use of methoxetamine. Ann Emerg Med 60:97–99. doi:10.1016/j.annemergmed.2011.11.018

    Article  PubMed  Google Scholar 

  • Huang X, Huang K, Zheng W, Beveridge TJ, Yang S, Li X, Li P, Zhou W, Liu Y (2015) The effects of GSK-3beta blockade on ketamine self-administration and relapse to drug-seeking behavior in rats. Drug Alcohol Depend 147:257–265. doi:10.1016/j.drugalcdep.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  • Imbert L, Boucher A, Delhome G, Cueto T, Boudinaud M, Maublanc J, Dulaurent S, Descotes J, Lachâtre G, Gaulier JM (2014) Analytical findings of an acute intoxication after inhalation of methoxetamine. J Anal Toxicol 38:410–415. doi:10.1093/jat/bku052

    Article  CAS  PubMed  Google Scholar 

  • Jalabert M, Bourdy R, Courtin J, Veinante P, Manzoni OJ, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci U S A 108:16446–16450. doi:10.1073/pnas.1105418108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson CE, Balster RL (1978) A summary of the results of a drug self-administration study using substitution procedures in rhesus monkeys. Bull Narc 30:43–54

    CAS  PubMed  Google Scholar 

  • Jordan S, Chen R, Fernalld R, Johnson J, Regardie K, Kambayashi J, Tadori Y, Kitagawa H, Kikuchi T (2006) In vitro biochemical evidence that the psychotomimetics phencyclidine, ketamine and dizocilpine (MK-801) are inactive at cloned human and rat dopamine D2 receptors. Eur J Pharmacol 540:53–56

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors—implications for models of schizophrenia. Mol Psychiatry 7:837–144

    Article  CAS  PubMed  Google Scholar 

  • Katz JL (1989) Drugs as reinforcers: pharmacological and behavioural factors. In: Liebman JM, Cooper SJ (eds) The neuropharmacological basis of reward. New York, Oxford, pp 164–213

    Google Scholar 

  • Kelley AE, Smith-Roe SL, Holahan MR (1997) Response-reinforcement learning is dependent on N-methyl-d-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A 94:12174–12179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjellgren A, Jonsson K (2013) Methoxetamine (MXE)—a phenomenological study of experiences induced by a “legal high” from the internet. J Psychoactive Drugs 45:276–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  CAS  PubMed  Google Scholar 

  • Lecca S, Melis M, Luchicchi A, Muntoni AL, Pistis M (2012) Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37:1164–1176. doi:10.1038/npp.2011.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnér L, Endersz H, Ohman D, Bengtsson F, Schalling M, Svensson TH (2001) Reboxetine modulates the firing pattern of dopamine cells in the ventral tegmental area and selectively increases dopamine availability in the prefrontal cortex. J Pharmacol Exp Ther 297:540–546

    PubMed  Google Scholar 

  • Lipski J (1981) Antidromic activation of neurons as an analytic tool in the study of the central nervous system. J Neurosci Methods 4:1–32

    Article  CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr (2009) Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 123:143–150. doi:10.1016/j.pharmthera.2009.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuzawa M, Nakao S, Miyamoto E, Yamada M, Murao K, Nishi K, Shingu K (2003) Pentobarbital inhibits ketamine-induced dopamine release in the rat nucleus accumbens: a microdialysis study. Anesth Analg 96:148–152

    CAS  PubMed  Google Scholar 

  • Morris H, Wallach J (2014) From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal 6:614–632. doi:10.1002/dta

    Article  CAS  PubMed  Google Scholar 

  • O’Connor EC, Chapman K, Butler P, Mead AN (2011) The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev 35:912–938. doi:10.1016/j.neubiorev.2010.10.012

    Article  PubMed  Google Scholar 

  • Panin F, Lintas A, Diana M (2014) Nicotine-induced increase of dopaminergic mesoaccumbal neuron activity is prevented by acute restraint stress. In vivo electrophysiology in rats. Eur Neuropsychopharmacol 24:1175–1180. doi:10.1016/j.euroneuro.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson GR (2007) The rat brain in stereotaxic coordinates, 7th edn. Elsevier Academic Press, London

    Google Scholar 

  • Pontieri FE1, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. Proc Natl Acad Sci 92(26):12304–8

  • Riegel AC, Zapata A, Shippenberg TS, French ED (2007) The abused inhalant toluene increases dopamine release in the nucleus accumbens by directly stimulating ventral tegmental area neurons. Neuropsychopharmacology 32:1558–1569

    Article  CAS  PubMed  Google Scholar 

  • Rocha BA, Ward AS, Egilmez Y, Lytle DA, Emmett-Oglesby MW (1996) Tolerance to the discriminative stimulus and reinforcing effects of ketamine. Behav Pharmacol 7:160–168

    CAS  PubMed  Google Scholar 

  • Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, Iversen L (2013) The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One 8:e59334. doi:10.1371/journal.pone.0059334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto S, Nakao S, Masuzawa M, Inada T, Maze M, Franks NP, Shingu K (2006) The differential effects of nitrous oxide and xenon on extracellular dopamine levels in the rat nucleus accumbens: a microdialysis study. Anesth Analg 103:1459–1463

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Guan HC (2008) Phencyclidine and glutamate agonist LY379268 stimulate dopamine D2High receptors: D2 basis for schizophrenia. Synapse 62:819–828. doi:10.1002/syn.20561

    Article  CAS  PubMed  Google Scholar 

  • Sein Anand J, Wiergowski M, Barwina M, Kaletha K (2012) Accidental intoxication with high dose of methoxetamine (MXE)—a case report. PrzeglLek 69:609–610

    Google Scholar 

  • Shields JE, Dargan PI, Wood DM, Puchnarewicz M, Davies S, Waring WS (2012) Methoxetamine associated reversible cerebellar toxicity: three cases with analytical confirmation. Clin Toxicol 50:438–440. doi:10.3109/15563650.2012.683437

    Article  CAS  Google Scholar 

  • Suzuki T, Kato H, Aoki T, Tsuda M, Narita M, Misawa M (2000) Effects of the non-competitive NMDA receptor antagonist ketamine on morphine-induced place preference in mice. Life Sci 67:383–389

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Lam WP, Wai MS, Yu WH, Yew DT (2012) Chronic ketamine administration modulates midbrain dopamine system in mice. PLoS One 7:e43947. doi:10.1371/journal.pone.0043947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  CAS  PubMed  Google Scholar 

  • Tortoriello J, Ortega A, Herrera-Ruíz M, Trujillo J, Reyes-Vázquez C (1998) Galphimine-B modifies electrical activity of ventral tegmental area neurons in rats. Planta Med 64:309–313

    Article  CAS  PubMed  Google Scholar 

  • Trujillo KA, Zamora JJ, Warmoth KP (2008) Increased response to ketamine following treatment at long intervals: implications for intermittent use. Biol Psychiatry 63:178–183. doi:10.1016/j.biopsych.2007.02.014

    Article  CAS  PubMed  Google Scholar 

  • Ungless MA, Grace AA (2012) Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci 35:422–430. doi:10.1016/j.tins.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Kam EL, De Vry J, Tzschentke TM (2007) Effect of 2-methyl-6-(phenylethynyl) pyridine on intravenous self-administration of ketamine and heroin in the rat. Behav Pharmacol 18(8):717–24. doi:10.1097/FBP.0b013e3282f18d58

  • Venniro M, Mutti A, Chiamulera C (2015) Pharmacological and non-pharmacological factors that regulate the acquisition of ketamine self-administration in rats. Psychopharmacology 232:4505–4514. doi:10.1007/s00213-015-4077-9

    Article  CAS  PubMed  Google Scholar 

  • Wiergowski M, Anand JS, Krzyżanowski M, Jankowski Z (2014) Acute methoxetamine and amphetamine poisoning with fatal outcome: a case report. Int J Occup Med Environ Health 27:683–690. doi:10.2478/s13382-014-0290-8

    Article  PubMed  Google Scholar 

  • Wikström M, Thelander G, Dahlgren M, Kronstrand R (2013) An accidental fatal intoxication with methoxetamine. J Anal Toxicol 37:43–46. doi:10.1093/jat/bks086

    Article  PubMed  Google Scholar 

  • Wiley JL, Evans RL, Grainger DB, Nicholson KL (2008) Age-dependent differences in sensitivity and sensitization to cannabinoids and ‘club drugs’ in male adolescent and adult rats. Addict Biol 13:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winstock AR, Lawn W, Deluca P (2015) Borschmann R (2015) Methoxetamine: an early report on the motivations for use, effect profile and prevalence of use in a UK clubbing sample. Drug Alcohol Rev. doi:10.1111/dar.12259

    Google Scholar 

  • Wood DM, Davies S, Puchnarewicz M, Johnston A, Dargan PI (2012) Acute toxicity associated with the recreational use of the ketamine derivative methoxetamine. Eur J Clin Pharmacol 68:853–856. doi:10.1007/s00228-011-1199-9

    Article  CAS  PubMed  Google Scholar 

  • Young AM, Woods JH (1981) Maintenance of behavior by ketamine and related compounds in rhesus monkeys with different self-administration histories. J Pharmacol Exp Ther 218:720–727

    CAS  PubMed  Google Scholar 

  • Zawilska JB (2014) Methoxetamine—a novel recreational drug with potent hallucinogenic properties. Toxicol Lett 230:402–407. doi:10.1016/j.toxlet.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Zhou WW, Ji YJ, Li Y et al (2015) Anxiolytic effects of ketamine in animal models of post traumatic stress disorder. Psychopharmacology 232:663–672. doi:10.1007/s00213-014-3697-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funded by ‘Joint Project 2012’ from University of Verona, in collaboration with C.N.R. Institute of Neuroscience, Cagliari, and University of Cagliari and a grant from Fondazione Banco di Sardegna 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mutti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutti, A., Aroni, S., Fadda, P. et al. The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology 233, 2241–2251 (2016). https://doi.org/10.1007/s00213-016-4275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4275-0

Keywords

Navigation