Skip to main content

Advertisement

Log in

The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Post-traumatic stress disorder (PTSD) is a chronic, debilitating disorder. Only two pharmacological agents are approved for PTSD treatment, and they often do not address the full range of symptoms nor are they equally effective in all cases. Animal models of PTSD are critical for understanding the neurobiology involved and for identification of novel therapeutic targets. Using the rodent PTSD model, single prolonged stress (SPS), we have implicated aberrant excitatory neural transmission and glucocorticoid receptor (GR) upregulation in the medial prefrontal cortex (mPFC) and hippocampus (HPC) in fear memory abnormalities associated with PTSD.

Objective

The objective of this study is to examine the potential protective effect of antiepileptic phenytoin (PHE) administration on SPS-induced extinction retention deficits and GR expression.

Methods

Forty-eight SPS-treated male Sprague Dawley rats or controls were administered PHE (40, 20 mg/kg, vehicle) for 7 days following SPS stressors; then, fear conditioning, extinction, and extinction retention were tested.

Results

Fear conditioning and extinction were unaffected by SPS or PHE, but SPS impaired extinction retention, and both doses of PHE rescued this impairment. Similarly, SPS increased GR expression in the mPFC and dorsal HPC, and PHE prevented SPS-induced GR upregulation in the mPFC.

Conclusions

These data demonstrate that PHE administration can prevent the development of extinction retention deficits and upregulation of GR. PHE exerts inhibitory effects on voltage-gated sodium channels and decreases excitatory neural transmission via glutamate antagonism. If glutamate hyperactivity in the days following SPS contributes to SPS-induced deficits, then these data may suggest that the glutamatergic system constitutes a target for secondary prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Press, Washington

    Google Scholar 

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Mletzko T, Welter S, Quinn S, Williams C, Brummer M, Siddiq S, Reed L, Heim CM, Nemeroff CB (2005) Effects of phenytoin on memory, cognition and brain structure in post-traumatic stress disorder: a pilot study. J Psychopharmacol 19:159–165

    Article  CAS  PubMed  Google Scholar 

  • Cunningham MO, Dhillon A, Wood SJ, Jones RS (2000) Reciprocal modulation of glutamate and GABA release may underlie the anticonvulsant effect of phenytoin. Neuroscience 95:343–351

    Article  CAS  PubMed  Google Scholar 

  • Eagle AL, Knox D, Roberts MM, Mulo K, Liberzon I, Galloway MP, Perrine SA (2013) Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels. Neurosci Res 75:130–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93

    Article  PubMed Central  PubMed  Google Scholar 

  • George SA, Knox D, Curtis AL, Aldridge JW, Valentino RJ, Liberzon I (2013a) Altered locus coeruleus-norepinephrine function following single prolonged stress. Eur J Neurosci 37:901–909

    Article  PubMed  Google Scholar 

  • George SA, Stout S, Tan M, Knox DK, Liberzon I (2013b) Early handling attenuates single prolonged stress induced enhancement of glucocorticoid receptor expression in prefrontal cortex. Biol Mood Anxiety Disord 3

  • Han F, Yan S, Shi Y (2013) Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS One 19;8(7)

  • Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:593–602

    Article  PubMed  Google Scholar 

  • Khan S, Liberzon I (2004) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacol (Berl) 172:225–229

    Article  CAS  Google Scholar 

  • Knox D, Perrine SA, George SA, Galloway MP, Liberzon I (2010) Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci Lett 480:16–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knox D, George SA, Fitzpatrick CJ, Rabinak CA, Maren S, Liberzon I (2012a) Single prolonged stress disrupts retention of extinguished fear in rats. Learn Mem 19:43–49

    Article  PubMed Central  PubMed  Google Scholar 

  • Knox D, Nault T, Henderson C, Liberzon I (2012b) Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model. Neuroscience 223:163–173

    Article  CAS  PubMed  Google Scholar 

  • Kohda K, Harada K, Kato K, Hoshino A, Motohashi J, Yamaji T, Morinobu S, Matsuoka N, Kato N (2007) Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148:22–33

    Article  CAS  PubMed  Google Scholar 

  • Li X, Han F, Liu D, Shi Y (2010) Changes of Bax, Bcl-2 and apoptosis in hippocampus in the rat model of post-traumatic stress disorder. Neurol Res 32(6):579–86

  • Liberzon I, Sripada CS (2008) The functional neuroanatomy of PTSD: a critical review. Prog Brain Res 167:151–169

    Article  PubMed  Google Scholar 

  • Liberzon I, Krstov M, Young EA (1997) Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22:443–453

    Article  CAS  PubMed  Google Scholar 

  • Liberzon I, Lopez JF, Flagel SB, Vazquez DM, Young EA (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11:11–17

    Article  CAS  PubMed  Google Scholar 

  • Lingamaneni R, Hemmings HC Jr (1999) Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes. Neurosci Lett 276:127–130

    Article  CAS  PubMed  Google Scholar 

  • Luine V, Villegas M, Martinez C, McEwen BS (1994) Repeated stress causes reversible impairments of spatial memory performance. Brain Res 639:167–170

    Article  CAS  PubMed  Google Scholar 

  • Mariotti V, Melissari E, Amar S, Conte A, Belmaker RH, Agam G, Pellegrini S (2010) Effect of prolonged phenytoin administration on rat brain gene expression assessed by DNA microarrays. Exp Biol Med (Maywood) 235:300–310

    Article  CAS  Google Scholar 

  • Matthews WD, Connor JD (1977) Actions of iontophoretic phenytoin and medazepam on hippocampal neurons. J Pharmacol Exp Ther 201:613–621

    CAS  PubMed  Google Scholar 

  • McEwen BS (1999) Stress and hippocampal plastcity. Annu Rev Neurosci 22:105–22

  • McEwen BS, Gould E (1990) Adrenal steroid influences on the survival of hippocampal neurons. Biochem Pharmacol 40:2393–2402

    Article  CAS  PubMed  Google Scholar 

  • Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK (2008) Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiatr Res 42:515–520

    Article  PubMed Central  PubMed  Google Scholar 

  • Nascimento Hackl LP, Carobrez AP (2007) Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task in rats. Neurobiol Learn Mem 88:177–185

    Article  PubMed  Google Scholar 

  • Nutt DJ (2000) The psychobiology of posttraumatic stress disorder. J Clin Psychiatry 61(Suppl 5):24–29, discussion 30–2

    CAS  PubMed  Google Scholar 

  • Rougemont-Bucking A, Linnman C, Zeffiro TA, Zeidan MA, Lebron-Milad K, Rodriguez-Romaguera J, Rauch SL, Pitman RK, Milad MR (2011) Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci Ther 17:227–236

    Article  PubMed  Google Scholar 

  • Sapolsky RM (1990) Glucocorticoids, hippocampal damage and the glutamatergic synapse. Prog Brain Res 86:13–23

    Article  CAS  PubMed  Google Scholar 

  • Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79

    Article  PubMed  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538

    Article  PubMed Central  PubMed  Google Scholar 

  • Sitges M, Guarneros A, Nekrassov V (2007) Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na + channel-mediated release. Neuropharmacology 53:854–862

    Article  CAS  PubMed  Google Scholar 

  • Spencer RL, Kalman BA, Cotter CS, Deak T (2000) Discrimination between changes in glucocorticoid receptor expression and activation in rat brain using western blot analysis. Brain Res 868:275–286

    Article  CAS  PubMed  Google Scholar 

  • Tamamori Y, Tamura Y, Yamazaki T, Ohya K (2005) Establishment of rat model of drug-induced gingival overgrowth induced by continuous administration of phenytoin. J Pharmacol Sci 98:290–297

    Article  CAS  PubMed  Google Scholar 

  • Wamil AW, McLean MJ (1993) Phenytoin blocks N-methyl-D-aspartate responses of mouse central neurons. J Pharmacol Exp Ther 267:218–227

    CAS  PubMed  Google Scholar 

  • Wang HT, Han F, Shi YX (2009) Activity of the 5-HT1A receptor is involved in the alteration of glucocorticoid receptor in hippocampus and corticotropin-releasing factor in hypothalamus in SPS rats. Int J Mol Med 24:227–231

    CAS  PubMed  Google Scholar 

  • Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS (1992) Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 2:431–435

    Article  CAS  PubMed  Google Scholar 

  • Wong PT, Teo WL (1986) The effect of phenytoin on glutamate and GABA transport. Neurochem Res 11:1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Morinobu S, Fuchikami M, Kurata A, Kozuru T, Yamawaki S (2008) Effects of single prolonged stress and D-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacology 33:2108–2116

    Article  CAS  PubMed  Google Scholar 

  • Yehuda R, Giller EL Jr, Mason JW (1993) Psychoneuroendocrine assessment of posttraumatic stress disorder: current progress and new directions. Prog Neuropsychopharmacol Biol Psychiatry 17:541–550

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Yang Q, Xu CT (2004) Effects of chronic stress and phenytoin on the long-term potentiation (LTP) in rat hippocampal CA1 region. Acta Biochim Biophys Sin (Shanghai) 36:375–378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research in this report was funded by a Department of Defense grant W81XWH-08-1-0661 awarded to Israel Liberzon. We would like to thank Dayan Knox, Chieh Chen, Nirmala Rajaram, Lan Xiao, Heidi Winklemann, and Emma Andrews for their help in conducting the experiments described in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie A. George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, S.A., Rodriguez-Santiago, M., Riley, J. et al. The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex. Psychopharmacology 232, 47–56 (2015). https://doi.org/10.1007/s00213-014-3635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3635-x

Keywords

Navigation