Skip to main content

Advertisement

Log in

Structure-activity relationship studies on neuroactive steroids in memory, alcohol and stress-related functions: a crucial benefit from endogenous level analysis

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

New research findings in the field of neuroactive steroids strongly suggest that to understand their role in physiopathology, it is essential to accurately measure their tissue levels. Through his broad chemical expertise and extensive knowledge of steroids, Dr. Robert H. Purdy pioneered structure-activity relationship studies on these compounds and developed innovative detection assays that are essential to assess their function in biological tissues.

Objective

The goal of the present paper is to point out the specific contributions of Dr. Purdy and his collaborators to the current knowledge on the role of neuroactive steroids in the modulation of memory and alcohol- and stress-related effects with particular emphasis on the detection assays he developed to assess their endogenous levels. Reviewed here are the major results as well as the original and valuable methodological strategies issued by the long-term collaboration between Dr Purdy and many scientists worldwide on the investigation of the structure-activity relationship of neuroactive steroids.

Results

Altogether, the data presented herein put forward the original notion that knowledge of the chemical structure of steroids is essential for their detection and the understanding of their role in physiological and pathological conditions, including the stress response.

Conclusions

The current challenge is to identify and quantify using appropriate methods neuroactive steroids in the context of both animal and clinical studies in order to reveal how their levels change under physiological and disease states. Dr. Purdy passed away in September 2012, but scientists all over the world will always be grateful for his pioneering work on steroid chemistry and for his great enthusiasm in research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ent-PREGS:

(-) PREGS enantiomer

3α,5α-THDOC:

3α,5α-Tetrahydrodeoxycorticosterone

3α,5α-THPROG allopregnanolone:

3α,5α-Tetrahydroprogesterone

3α,β THPROG pregnanolone:

3α,5β-Tetrahydroprogesterone

3β,5α-THPROG epiallopregnanolone:

3β,5α-Tetrahydroprogesterone

5α-DHPROG:

5α-Dihydroxyprogesterone

DHEA:

Dehydroepiandrosterone

GC:

Gas chromatography

LC:

Liquid chromatography

MS:

Mass spectrometry

NMDA:

N-Methyl-d-aspartate

PREG:

Pregnenolone

PROG:

Progesterone

RIA:

Radioimmunoassay

UCS:

Unpredictable chronic stress

GABA:

γ-Aminobutyric acid A

References

  • Akwa Y, Ladurelle N, Covey DF, Baulieu E-E (2001) The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc Natl Acad Sci U S A 98:14033–14037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alomary AA, Fitzgerald RL, Purdy RH (2001) Neurosteroid analysis. Int Rev Neurobiol 46:97–115

  • Alomary AA, Vallée M, O’Dell LE, Koob GF, Purdy RH, Fitzgerald RL (2003) Acutely administered ethanol participates in testosterone synthesis and increases testosterone in rat brain. Alcohol Clin Exp Res 27:38–43

  • Asano Y (1986) Characteristics of open field behaviour of Wistar and Sprague-Dawley rats. Exp Anim 35:505–508

    CAS  Google Scholar 

  • Barbaccia ML, Roscetti G, Bolacchi F, Concas A, Mostallino MC, Purdy RH, Biggio G (1996) Stress-induced increase in brain neuroactive steroids: antagonism by abecarnil. Pharmacol Biochem Behav 54:205–210

    CAS  PubMed  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Concas A, Biggio G (1997) The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol 120:1582–1588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbaccia ML, Serra M, Purdy RH, Biggio G (2001) Stress and neuroactive steroids. Int Rev Neurobiol 46:243–272

    CAS  PubMed  Google Scholar 

  • Baulieu E-E (1981) Steroid hormones in the brain: several mechanisms? In: Fuxe K, Gustafsson JA, Weterberg L (eds) Steroid Hormone Regulation of the Brain. Pergamon Press, Oxford, pp 3–14

    Google Scholar 

  • Baulieu E-E (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23:963–987

    CAS  PubMed  Google Scholar 

  • Bernardi F, Salvestroni C, Casarosa E, Nappi RE, Lanzone A, Luisi S, Purdy RH, Petraglia F, Genazzani AR (1998) Aging is associated with changes in allopregnanolone concentrations in brain, endocrine glands and serum in male rats. Eur J Endocrinol 138:316–321

    CAS  PubMed  Google Scholar 

  • Biggio G, Concas A, Follesa P, Sanna E, Serra M (2007) Stress, ethanol, and neuroactive steroids. Pharmacol Ther 116:140–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T (1997) Progesterone, 5alphapregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 764:173–178

    CAS  PubMed  Google Scholar 

  • Bowlby MR (1993) Pregnenolone sulfate potentiation of N-methyl-d-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 43:813–819

    CAS  PubMed  Google Scholar 

  • Brambilla F, Biggio G, Pisu MG, Bellodi L, Perna G, Bogdanovich-Djukic V, Purdy RH, Serra M (2003) Neurosteroid secretion in panic disorder. Psychiatry Res 118:107–116

    CAS  PubMed  Google Scholar 

  • Brot MD, Akwa Y, Purdy RH, Koob GF, Britton KT (1997) The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABA(A) receptors. Eur J Pharmacol 325:1–7

    CAS  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra S (1996) Stress, depression and the mesolimbic dopamine system. Psychopharmacol (Berl) 128:331–342

    CAS  Google Scholar 

  • Caruso D, Scurati S, Maschi O, De Angelis L, Roglio I, Giatti S, Garcia-Segura LM, Melcangi RC (2008) Evaluation of neuroactive steroid levels by liquid chromatography tandem mass spectrometry in central and peripheral nervous system: effect of diabetes. Neurochem Int 52:560–568

    CAS  PubMed  Google Scholar 

  • Chatman K, Hollenbeck T, Hagey L, Vallée M, Purdy R, Weiss F, Siuzdak G (1999) Nanoelectrospray mass spectrometry and precursor ion monitoring for quantitative steroid analysis and attomole sensitivity. Anal Chem 71:2358–2363

    CAS  PubMed  Google Scholar 

  • Christakoudi S, Cowan DA, Taylor NF (2010) Steroids excreted in urine by neonates with 21-hydroxylase deficiency: characterization, using GC-MS and GC-MS/MS, of the D-ring and side chain structure of pregnanes and pregnenes. Steroids 75:34–52

    CAS  PubMed  Google Scholar 

  • Christianson JP, Drugan RC, Flyer JG, Watkins LR, Maier SF (2013) Anxiogenic effects of brief swim stress are sensitive to stress history. Prog Neuropsychopharmacol Biol Psychiatry 44:17–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gammaaminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95:13284–13289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corpéchot C, Young J, Calvel M, Wehrey C, Veltz JN, Trouyer G, Mouren M, Prasad VVK, Banner C, Sjövall S, Baulieu E-E, Robel P (1993) Neurosteroids. 3α-hydroxy-5α-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology 133:1003–1009

    PubMed  Google Scholar 

  • Covey DF, Nathan D, Kalkbrenner M, Nilsson KR, Hu Y, Zorumski CF, Evers AS (2000) Enantioselectivity of pregnanolone-induced gamma-aminobutyric acid(A) receptor modulation and anesthesia. J Pharmacol Exp Ther 293:1009–1016

    CAS  PubMed  Google Scholar 

  • Covey DF, Evers AS, Mennerick S, Zorumski CF, Purdy RH (2001) Recent developments in structure-activity relationships for steroid modulators of GABA(A) receptors. Brain Res Brain Res Rev 37:91–97

    CAS  PubMed  Google Scholar 

  • Cronholm T, Makino I, Sjövall J (1971) Transfer of hydrogen from ethanol to steroids during ethanol metabolism in the rat. In Metab. Changes Induced Alc, pp 188-198

  • Czlonkowska AI, Krzascik P, Sienkiewicz-Jarosz H, Siemiatkowski M, Szyndler J, Bidzinski A, Plaznik A (2000) The effects of neurosteroids on picrotoxin-, bicuculline- and NMDA-induced seizures, and a hypnotic effect of ethanol. Pharmacol Biochem Behav 67:345–353

    CAS  PubMed  Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 98:2849–2854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fanelli F, Belluomo I, Di Lallo VD, Cuomo G, De Iasio R, Baccini M, Casadio E, Casetta B, Vicennati V, Gambineri A, Grossi G, Pasquali R, Pagotto U (2011) Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: comparison with current immunoassays and reference intervals in healthy adults. Steroids 76:244–253

    CAS  PubMed  Google Scholar 

  • George MS, Guidotti A, Rubinow D, Pan B, Mikalauskas K, Post RM (1994) CSF neuroactive steroids in affective disorders: pregnenolone, progesterone, and DBI. Biol Psychiatry 35:775–780

    CAS  PubMed  Google Scholar 

  • George O, Vallée M, Vitiello S, Le Moal M, Piazza PV, Mayo W (2010) Low brain allopregnanolone levels mediate flattened circadian activity associated with memory impairments in aged rats. Biol Psychiatry 68:956–963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grant KA, Helms CM, Rogers LS, Purdy RH (2008) Neuroactive steroid stereospecificity of ethanol-like discriminative stimulus effects in monkeys. J Pharmacol Exp Ther 326:354–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gregus A, Wintink AJ, Davis AC, Kalynchuk LE (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 156:105–114

    CAS  PubMed  Google Scholar 

  • Griffiths WJ, Liu S, Yang Y, Purdy RH, Sjövall J (1999) Nano-electrospray tandem mass spectrometry for the analysis of neurosteroid sulphates. Rapid Commun Mass Spectrom 13:1595–1610

    CAS  PubMed  Google Scholar 

  • Grippo AJ, Na ES, Johnson RF, Beltz TG, Johnson AK (2004) Sucrose ingestion elicits reduced Fos expression in the nucleus accumbens of anhedonic rats. Brain Res 1019:259–264

    CAS  PubMed  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. Brain Res Brain Res Rev 37:110–115

    CAS  PubMed  Google Scholar 

  • Higashi T (2006) Trace determination of steroids causing age-related diseases using LC/MS combined with detection-oriented derivatization. Chem Pharm Bull (Tokyo) 54:1479–1485

    CAS  Google Scholar 

  • Higashi T, Nagahama A, Otomi N, Shimada K (2007) Studies on neurosteroids XIX. Development and validation of liquid chromatography-tandem mass spectrometric method for determination of 5alpha-reduced pregnane-type neurosteroids in rat brain and serum. J Chromatogr B Analyt Technol Biomed Life Sci 848:188–199

    CAS  PubMed  Google Scholar 

  • Hsu HJ, Liang MR, Chen CT, Chung BC (2006) Pregnenolone stabilizes microtubules and promotes zebrafish embryonic cell movement. Nature 439:480–483

    CAS  PubMed  Google Scholar 

  • Irwin RP, Lin SZ, Rogawski MA, Purdy RH, Paul SM (1994) Steroid potentiation and inhibition of N-methyl-d-aspartate receptor-mediated intracellular Ca++ responses: structure activity studies. J Pharmacol Exp Ther 271:677–682

    CAS  PubMed  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    CAS  PubMed  Google Scholar 

  • Keski-Rahkonen P, Huhtinen K, Poutanen M, Auriola S (2011) Fast and sensitive liquid chromatography-mass spectrometry assay for seven androgenic and progestagenic steroids in human serum. J Steroid Biochem Mol Biol 127:396–404

    CAS  PubMed  Google Scholar 

  • Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214

    CAS  PubMed  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    CAS  PubMed  Google Scholar 

  • Koal T, Schmiederer D, Pham-Tuan H, Röhring C, Rauh M (2012) Standardized LC-MS/MS based steroid hormone profile-analysis. J Steroid Biochem Mol Biol 129:129–138

    CAS  PubMed  Google Scholar 

  • Krone N, Hughes BA, Lavery GG, Stewart PM, Arlt W, Shackleton CH (2010) Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol 121:496–504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushnir MM, Rockwood AL, Roberts WL, Yue B, Bergquist J, Meikle AW (2011) Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem 44:77–88

    CAS  PubMed  Google Scholar 

  • Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    CAS  PubMed  Google Scholar 

  • Lambert JJ, Cooper MA, Simmons RD, Weir CJ, Belelli D (2009) Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34:S48–S58

    CAS  PubMed  Google Scholar 

  • Lu SF, Mo Q, Hu S, Garippa C, Simon NG (2003) Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity. J Neurobiol 57:163–171

    CAS  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    CAS  PubMed  Google Scholar 

  • Marx CE, Shampine LJ, Khisti RT, Trost WT, Bradford DW, Grobin AC, Massing MW, Madison RD, Butterfield MI, Lieberman JA, Morrow AL (2006a) Olanzapine and fluoxetine administration and coadministration increase rat hippocampal pregnenolone, allopregnanolone and peripheral deoxycorticosterone: implications for therapeutic actions. Pharmacol Biochem Behav 84:609–617

    CAS  PubMed  Google Scholar 

  • Marx CE, Trost WT, Shampine LJ, Stevens RD, Hulette CM, Steffens DC, Ervin JF, Butterfield MI, Blazer DG, Massing MW, Lieberman JA (2006b) The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer’s disease. Biol Psychiatry 60:1287–1294

    CAS  PubMed  Google Scholar 

  • Maurice T, Urani A, Phan VL, Romieu P (2001) The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Brain Res Rev 37:116–132

    CAS  PubMed  Google Scholar 

  • Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG (2008) Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 65:777–797

    CAS  PubMed  Google Scholar 

  • Mellon SH, Griffin LD (2002) Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13:35–43

    CAS  PubMed  Google Scholar 

  • Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H (1999) Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51:63–81

    CAS  PubMed  Google Scholar 

  • Morrow AL, Pace JR, Purdy RH, Paul SM (1990) Characterization of steroid interactions with gamma-aminobutyric acid receptor-gated chloride ion channels: evidence for multiple steroid recognition sites. Mol Pharmacol 37:263–270

    CAS  PubMed  Google Scholar 

  • Murakami K, Fellous A, Baulieu EE, Robel P (2000) Pregnenolone binds to microtubule associated protein 2 and stimulates microtubule assembly. Proc Natl Acad Sci U S A 97:3579–3584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JD, Mathe AA (2010) Animal models of depression and anxiety: what do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 35:1357–1375

    PubMed  Google Scholar 

  • Nilsson KR, Zorumski CF, Covey DF (1998) Neurosteroid analogues. 6. The synthesis and GABAA receptor pharmacology of enantiomers of dehydroepiandrosterone sulfate, pregnenolone sulfate, and (3α,5β)-3-hydroxypregnan-20-one sulfate. J Med Chem 41:2604–2613

    CAS  PubMed  Google Scholar 

  • O’Dell LE, Alomary AA, Vallée M, Koob GF, Fitzgerald RL, Purdy RH (2004) Ethanol induced increases in neuroactive steroids in the rat brain and plasma are absent in adrenalectomized and gonadectomized rats. Eur J Pharmacol 484:241–247

    PubMed  Google Scholar 

  • O’Dell LE, Purdy RH, Covey DF, Richardson HN, Roberto M, Koob GF (2005) Epipregnanolone and a novel synthetic neuroactive steroid reduce alcohol self-administration in rats. Pharmacol Biochem Behav 81:543–550

    PubMed  Google Scholar 

  • Park-Chung M, Wu F-S, Purdy RH, Malayev AA, Gibb TT, Farb DH (1997) Distinct sites for inverse modulation of N-methyl-d-aspartate receptors by sulfated steroids. Mol Pharmacol 52:1113–1123

    CAS  PubMed  Google Scholar 

  • Park-Chung M, Malayev A, Purdy RH, Gibbs TT, Farb DH (1999) Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res 830:72–87

    CAS  PubMed  Google Scholar 

  • Patte-Mensah C, Kibaly C, Mensah-Nyagan AG (2005) Substance P inhibits progesterone conversion to neuroactive metabolites in spinal sensory circuit: a potential component of nociception. Proc Natl Acad Sci U S A 102:9044–9049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    CAS  PubMed  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    CAS  PubMed  Google Scholar 

  • Poor V, Juricskay S, Gati A, Osvath P, Tenyi T (2004) Urinary steroid metabolites and 11beta-hydroxysteroid dehydrogenase activity in patients with unipolar recurrent major depression. J Affect Disord 81:55–59

    CAS  PubMed  Google Scholar 

  • Porcu P, O’Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, Morrow AL (2009) Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum. Steroids 74:463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porsolt RD, Brossard G, Hautbois C, Roux S (2001) Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci Chapter 8: Unit 8.10A

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    CAS  PubMed  Google Scholar 

  • Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759–765

    CAS  PubMed  Google Scholar 

  • Purdy RH, Moore PH Jr, Rao PN, Hagino N, Yamaguchi T, Schmidt P, Rubinow DR, Morrow AL, Paul SM (1990a) Radioimmunoassay of 3 alpha-hydroxy-5 alpha-pregnan-20-one in rat and human plasma. Steroids 55:290–296

    CAS  PubMed  Google Scholar 

  • Purdy RH, Morrow AL, Blinn JR, Paul SM (1990b) Synthesis, metabolism, and pharmacological activity of 3 alpha-hydroxy steroids which potentiate GABA-receptor mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 33:1572–1581

    CAS  PubMed  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH Jr, Paul SM (1991) Stress-induced elevations of gammaaminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purdy RH, Valenzuela CF, Janak PH, Finn DA, Biggio G, Bäckström T (2005) Neuroactive steroids and ethanol. Alcohol Clin Exp Res 29:1292–1298

    CAS  PubMed  Google Scholar 

  • Rao PN, Purdy RH, Moore PH Jr, Goldzieher JW (1980) Synthesis of new steroid haptens for radioimmunoassay-VI. 3-O-Carboxymethyl ether derivatives of equine estrogens. Highly specific antisera for measurement of equilin and 17 alpha-dihydroequilin in plasma. J Steroid Biochem 13:1291–1298

    CAS  PubMed  Google Scholar 

  • Reddy DS (2010) Neurosteroids endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romeo E, Strohle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913

    CAS  PubMed  Google Scholar 

  • Roth RH, Tam SY, Ida Y, Yang JX, Deutch AY (1988) Stress and the mesocorticolimbic dopamine systems. Ann N Y Acad Sci 537:138–147

    CAS  PubMed  Google Scholar 

  • Rupprecht R, Holsboer F (2001) Neuroactive steroids in neuropsychopharmacology. Int Rev Neurobiol 46:461–477

    CAS  PubMed  Google Scholar 

  • Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, Havemann-Reinecke U (2005) Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162:127–134

    PubMed  Google Scholar 

  • Sanna E, Talani G, Busonero F, Pisu MG, Purdy RH, Serra M, Biggio G (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J Neurosci 24:6521–6530

    CAS  PubMed  Google Scholar 

  • Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–377

    PubMed  Google Scholar 

  • Schuckit MA (1998) Alcoholism and drug dependency. In: Fauci AS, Braunwald E, Isselbacher KJ et al (eds) Harrison’s principles of internal medicine, 14th edn. McGraw-Hill, New York, p 2503

    Google Scholar 

  • Sedlacek M, Korinek M, Petrovic M, Cais O, Adamusova E, Chodounska H, Vyklicky L Jr (2008) Neurosteroid modulation of ionotropic glutamate receptors and excitatory synaptic transmission. Physiol Res 57:S49–S57

    CAS  PubMed  Google Scholar 

  • Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuveri F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J Neurochem 75:732–740

    CAS  PubMed  Google Scholar 

  • Serra M, Sanna E, Mostallino MC, Biggio G (2007) Social isolation stress and neuroactive steroids. Eur Neuropsychopharmacol 17:1–11

    CAS  PubMed  Google Scholar 

  • Southwick SM, Vythilingam M, Charney DS (2005) The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 1:255–291

    PubMed  Google Scholar 

  • Stanczyk FZ, Clarke NJ (2010) Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol 121:491–495

    CAS  PubMed  Google Scholar 

  • Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017

    PubMed  Google Scholar 

  • Strohle A, Romeo E, Hermann B, Pasini A, Spalletta G, di Michele F, Holsboer F, Rupprecht R (1999) Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psychiatry 45:274–277

    CAS  PubMed  Google Scholar 

  • Strous RD, Maayan R, Weizman A (2006) The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bedside. Eur Neuropsychopharmacol 16:155–169

    CAS  PubMed  Google Scholar 

  • Tannenbaum B, Tannenbaum G, Anisman H (2002) Neurochemical and behavioral alterations elicited by a chronic intermittent stressor regimen: implications for allostatic load. Brain Res 953:82–92

    CAS  PubMed  Google Scholar 

  • Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A 95:3239–3244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallée M, Mayo W, Corpéchot C, Young J, Le Moal M, Baulieu E-E, Robel P, Simon H (1997) Neurosteroids: cognitive performance in deficient aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci U S A 94:14865–14870

    PubMed Central  PubMed  Google Scholar 

  • Vallée M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem 287:153–166

    PubMed  Google Scholar 

  • Vallée M, Mayo W, Koob GF, Le Moal M (2001) Neurosteroids in learning and memory processes. Int Rev Neurobiol 46:273–320

    PubMed  Google Scholar 

  • Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarrière V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343:94–98

    PubMed Central  PubMed  Google Scholar 

  • Van Broekhoven F, Verkes RJ (2003) Neurosteroids in depression: a review. Psychopharmacol (Berl) 165:97–110

    Google Scholar 

  • Venard C, Boujedaini N, Belon P, Mensah-Nyagan AG, Patte-Mensah C (2008) Regulation of neurosteroid allopregnanolone biosynthesis in the rat spinal cord by glycine and the alkaloidal analogs strychnine and gelsemine. Neuroscience 153:154–161

    CAS  PubMed  Google Scholar 

  • Vollmayr B, Henn FA (2003) Stress models of depression. Clin Neurosci Res 3:245–251

    Google Scholar 

  • Wang Y, Griffiths WJ (2008) Capillary liquid chromatography combined with tandem mass spectrometry for the study of neurosteroids and oxysterols in brain. Neurochem Int 52:506–521

    CAS  PubMed  Google Scholar 

  • Wang M, Seippel L, Purdy RH, Bäckström T (1996) Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J Clin Endocrinol Metab 81:1076–1082

    CAS  PubMed  Google Scholar 

  • Wang Y, Karu K, Griffiths W (2007) Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie 89:182–191

    CAS  PubMed  Google Scholar 

  • Weaver CE, Land MB, Purdy RH, Richards KG, Gibbs TT, Farb DH (2000) Geometry and charge determine pharmacological effects of steroids on N-methyl-d-aspartate receptor induced Ca(2+) accumulation and cell death. J Pharmacol Exp Ther 293:747–754

    CAS  PubMed  Google Scholar 

  • Weng JH, Liang MR, Chen CH, Tong SK, Huang TC, Lee SP, Chen YR, Chen CT, Chung BC (2013) Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration. Nat Chem Biol 9:636–642

    CAS  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16

    CAS  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–329

    CAS  PubMed  Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–188

    CAS  PubMed  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    CAS  PubMed  Google Scholar 

  • Wolkowitz OM, Reus VI, Chan T, Manfredi F, Raum W, Johnson R, Canick J (1999) Antiglucocorticoid treatment of depression: double-blind ketoconazole. Biol Psychiatry 45:1070–1074

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Agnès Grel, Sergio Vitiello and Cédric Dupuy for the technical help. Supported by INSERM, the University Victor Segalen-Bordeaux2, Structure Fédérative de Recherche Neurosciences (SFRn) de l’Université de Bordeaux and Region Aquitaine funds. All animal procedures were performed in accordance with the National Institutes of Health Guide For the Care and Use of Laboratory Animals (National Research Council, 1985) and the French and European Communities Council Directive (86/609/EEC) and approved by the Institutional Animal Care and Use Committee of The Scripps Research Institute or the Aquitaine-Poitou Charentes ethical committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Vallée.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallée, M. Structure-activity relationship studies on neuroactive steroids in memory, alcohol and stress-related functions: a crucial benefit from endogenous level analysis. Psychopharmacology 231, 3243–3255 (2014). https://doi.org/10.1007/s00213-014-3593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3593-3

Keywords

Navigation