Skip to main content
Log in

Cognitive deficits and neurotoxicity induced by synthetic cathinones: is there a role for neuroinflammation?

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The number of synthetic derivatives of cathinone, the primary psychoactive alkaloid found in Catha edulis (khat), has risen exponentially in the past decade. Synthetic cathinones (frequently referred to as “bath salts”) produce adverse cognitive and behavioral sequelae, share similar pharmacological mechanisms of action with traditional psychostimulants, and may therefore trigger similar cellular events that give rise to neuroinflammation and neurotoxicity.

Objectives

In this review, we provide a brief overview of synthetic cathinones, followed by a summary of cognitive deficits in animals and humans that have been documented following acute or repeated exposure. We also summarize growing evidence from in vitro and in vivo studies for synthetic cathinone-induced neurotoxicity, and provide a working hypothetic model of potential cellular mechanisms.

Results

Synthetic cathinones produce varying effects on markers of monoaminergic terminal function and can increase the formation of reactive oxygen and nitrogen species, induce apoptotic signaling, and cause neurodegeneration and cytotoxicity. We hypothesize that these effects result from biochemical events similar to those induced by traditional psychostimulants. However, empirical evidence for the ability of synthetic cathinones to induce neuroinflammatory processes is currently lacking.

Conclusions

Like their traditional psychostimulant counterparts, synthetic cathinones appear to induce neurocognitive dysfunction and cytotoxicity, which are dependent on drug type, dose, frequency, and time following exposure. However, additional studies on synthetic cathinone-induced neuroinflammation are clearly needed, as are investigations into the neurochemical and neuroimmune mechanisms underlying their neurotoxic effects. Such endeavors may lead to novel therapeutic avenues to promote recovery in habitual synthetic cathinone users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam A, Gerecsei LI, Lepesi N, Csillag A (2014) Apoptotic effects of the 'designer drug' methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain. Neurotoxicology 44C:231–236

    Article  CAS  Google Scholar 

  • Aleryani SL, Aleryani RA, Al-Akwa AA (2011) Khat a drug of abuse: roles of free radicals and antioxidants. Drug Test Anal 3:548–551

    Article  CAS  PubMed  Google Scholar 

  • Angoa-Perez M, Kane MJ, Francescutti DM, Sykes KE, Shah MM, Mohammed AM, Thomas DM, Kuhn DM (2012) Mephedrone, an abused psychoactive component of 'bath salts' and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 120:1097–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angoa-Perez M, Kane MJ, Briggs DI, Francescutti DM, Sykes CE, Shah MM, Thomas DM, Kuhn DM (2013) Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. J Neurochem 125:102–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angoa-Perez M, Kane MJ, Herrera-Mundo N, Francescutti DM, Kuhn DM (2014) Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci 97:31–36

    Article  CAS  PubMed  Google Scholar 

  • Angoa-Perez M, Anneken JH, Kuhn DM (2017) Neurotoxicology of synthetic cathinone analogs. Curr Top Behav Neurosci 32:209–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anneken JH, Angoa-Perez M, Kuhn DM (2015) 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: beta-ketoamphetamine modulation of neurotoxicity by the dopamine transporter. J Neurochem 133:211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anneken JH, Angoa-Perez M, Sati GC, Crich D, Kuhn DM (2017) Dissecting the influence of two structural substituents on the differential neurotoxic effects of acute methamphetamine and mephedrone treatment on dopamine nerve endings with the use of 4-methylmethamphetamine and methcathinone. J Pharmacol Exp Ther 360:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anneken JH, Angoa-Perez M, Sati GC, Crich D, Kuhn DM (2018) Assessing the role of dopamine in the differential neurotoxicity patterns of methamphetamine, mephedrone, methcathinone and 4-methylmethamphetamine. Neuropharmacology 134:46–56

    Article  CAS  PubMed  Google Scholar 

  • Araujo AM, Valente MJ, Carvalho M, Dias da Silva D, Gaspar H, Carvalho F, de Lourdes Bastos M, Guedes de Pinho P (2015) Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of 'legal high' packages containing synthetic cathinones. Arch Toxicol 89:757–771

    Article  CAS  PubMed  Google Scholar 

  • Banks ML, Worst TJ, Rusyniak DE, Sprague JE (2014) Synthetic cathinones (“bath salts”). J Emerg Med 46:632–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann MH (2014) Awash in a sea of ‘bath salts’: implications for biomedical research and public health. Addiction 109:1577–1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products. Neuropsychopharmacology 38:552–562

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Volkow ND (2016) Abuse of new psychoactive substances: threats and solutions. Neuropsychopharmacology 41:663–665.

  • Bisht K, Sharma KP, Lecours C, Sanchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gomez-Nicola D, Luheshi G, Vallieres L, Branchi I, Maggi L, Limatola C, Butovsky O, Tremblay ME (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64:826–839

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogale T, Engidawork E, Yisma E (2016) Subchronic oral administration of crude khat extract (Catha edulis forsk) induces schizophernic-like symptoms in mice. BMC Complement Altern Med 16:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budzynska B, Michalak A, Frankowska M, Kaszubska K, Biala G (2017) Acute behavioral effects of co-administration of mephedrone and MDMA in mice. Pharmacol Rep 69:199–205

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Bisagno V (2013) The primacy of cognition in the manifestations of substance use disorders. Front Neurol 4:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadet JL, Bisagno V, Milroy CM (2014) Neuropathology of substance use disorders. Acta Neuropathol 127:91–107

    Article  CAS  PubMed  Google Scholar 

  • Ciudad-Roberts A, Duart-Castells L, Camarasa J, Pubill D, Escubedo E (2016) The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice. Toxicol Appl Pharmacol 293:10–20

    Article  CAS  PubMed  Google Scholar 

  • Colzato LS, Ruiz MJ, van den Wildenberg WP, Bajo MT, Hommel B (2010) Long-term effects of chronic khat use: impaired inhibitory control. Front Psychol 1:219

    PubMed  Google Scholar 

  • Colzato LS, Ruiz MJ, van de Wildenberg WP, Hommel B (2011) Khat use is associated with impaired working memory and cognitive flexibility. PLoS One e20602:6

    Google Scholar 

  • Cui C, Shurtleff D, Harris RA (2014) Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol 118:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel JJ, Hughes RN (2016) Increased anxiety and impaired spatial memory in young adult rats following adolescent exposure to methylone. Pharmacol Biochem Behav 146-147:44–49

    Article  CAS  PubMed  Google Scholar 

  • de Sousa Fernandes Perna EB, Papaseit E, Perez-Mana C, Mateus J, Theunissen EL, Kuypers K, de la Torre R, Farre M, Ramaekers JG (2016) Neurocognitive performance following acute mephedrone administration, with and without alcohol. J Psychopharmacol 30:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Dean AC, Groman SM, Morales AM, London ED (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 38:259–274

    Article  CAS  PubMed  Google Scholar 

  • den Hollander B, Rozov S, Linden AM, Uusi-Oukari M, Ojanpera I, Korpi ER (2013) Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacol Biochem Behav 103:501–509

    Article  CAS  Google Scholar 

  • den Hollander B, Sundstrom M, Pelander A, Ojanpera I, Mervaala E, Korpi ER, Kankuri E (2014) Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci 141:120–131

    Article  CAS  Google Scholar 

  • den Hollander B, Sundstrom M, Pelander A, Siltanen A, Ojanpera I, Mervaala E, Korpi ER, Kankuri E (2015) Mitochondrial respiratory dysfunction due to the conversion of substituted cathinones to methylbenzamides in SH-SY5Y cells. Sci Rep 5:14924

    Article  CAS  Google Scholar 

  • Dolan SB, Chen Z, Huang R, Gatch MB (2018) "ecstasy" to addiction: mechanisms and reinforcing effects of three synthetic cathinone analogs of MDMA. Neuropharmacology 133:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easton N, Marsden CA (2006) Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 20:194–210

    Article  CAS  PubMed  Google Scholar 

  • Eggen BJ, Raj D, Hanisch UK, Boddeke HW (2013) Microglial phenotype and adaptation. J NeuroImmune Pharmacol 8:807–823

    Article  CAS  PubMed  Google Scholar 

  • Fass JA, Fass AD, Garcia AS (2012) Synthetic cathinones (bath salts): legal status and patterns of abuse. Ann Pharmacother 46:436–441

    Article  CAS  PubMed  Google Scholar 

  • Frazer KM, Richards Q, Keith DR (2018) The long-term effects of cocaine use on cognitive functioning: a systematic critical review. Behav Brain Res 348:241–262

    Article  CAS  PubMed  Google Scholar 

  • Freeman TP, Morgan CJ, Vaughn-Jones J, Hussain N, Karimi K, Curran HV (2012) Cognitive and subjective effects of mephedrone and factors influencing use of a 'new legal high. Addiction 107:792–800

    Article  PubMed  Google Scholar 

  • Gaspar H, Bronze S, Oliveira C, Victor BL, Machuqueiro M, Pacheco R, Caldeira MJ, Santos S (2018) Proactive response to tackle the threat of emerging drugs: synthesis and toxicity evaluation of new cathinones. Forensic Sci Int 290:146–156

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R (2016) Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and alpha-pyrrolidinovalerophenone (alpha-PVP). Brain Res Bull 126:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould TJ (2010) Addiction and cognition. Addict Sci Clin Pract 5:4–14

    PubMed  PubMed Central  Google Scholar 

  • Gregg RA, Hicks C, Nayak SU, Tallarida CS, Nucero P, Smith GR, Reitz AB, Rawls SM (2016) Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator. Neuropharmacology 108:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, Buch S (2015) Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 11:995–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339:530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart CL, Marvin CB, Silver R, Smith EE (2012) Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology 37:586–608

    Article  CAS  PubMed  Google Scholar 

  • Herzig DA, Brooks R, Mohr C (2013) Inferring about individual drug and schizotypy effects on cognitive functioning in polydrug using mephedrone users before and after clubbing. Hum Psychopharmacol 28:168–182

    Article  CAS  PubMed  Google Scholar 

  • Hoffman R, Al’absi M (2013a) Working memory and speed of information processing in chronic khat users: preliminary findings. Eur Addict Res 19:1–6

    Article  PubMed  Google Scholar 

  • Hoffman R, Al’absi M (2013b) Concurrent use of khat and tobacco is associated with verbal learning and delayed recall deficits. Addiction 108:1855–1862

    Article  PubMed  PubMed Central  Google Scholar 

  • Homman L, Seglert J, Morgan MJ (2018) An observational study on the sub-acute effects of mephedrone on mood, cognition, sleep and physical problems in regular mephedrone users. Psychopharmacology 235:2609–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail AA, El Sanosy RM, Rohlman DS, El-Setouhy M (2014) Neuropsychological functioning among chronic khat users in Jazan region, Saudi Arabia. Subst Abus 35:235–244

    Article  PubMed  Google Scholar 

  • Jacobs EH, Smit AB, De Vries TJ, Schoffelmeer ANM (2003) Neuroadaptive effects of active versus passive drug administration in addiction research. Trends Pharmacol Sci 24:566–573

    Article  CAS  PubMed  Google Scholar 

  • Kalix P (1980) A constituent of khat leaves with amphetamine-like releasing properties. Eur J Pharmacol 68:213–215

    Article  CAS  PubMed  Google Scholar 

  • Kalix P (1981) Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology 74:269–270

    Article  CAS  PubMed  Google Scholar 

  • Kalix P (1982) The amphetamine-like releasing effect of the alkaloid (−)cathinone on rat nucleus accumbens and rabbit caudate nucleus. Prog Neuro-Psychopharmacol Biol Psychiatry 6:43–49

    Article  CAS  Google Scholar 

  • Kaminska K, Noworyta-Sokolowska K, Gorska A, Rzemieniec J, Wnuk A, Wojtas A, Kreiner G, Kajta M, Golembiowska K (2018) The effects of exposure to mephedrone during adolescence on brain neurotransmission and neurotoxicity in adult rats. Neurotox Res

  • Karch SB (2015) Cathinone neurotoxicity (“the 3Ms”). Curr Neuropharmacol 13:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karila L, Lafaye G, Scocard A, Cottencin O, Benyamina A (2018) MDPV and a-PVP use in humans: the twisted sisters. Neuropharmacology 134:65–72

    Article  CAS  PubMed  Google Scholar 

  • Karlsson L, Andersson M, Kronstrand R, Kugelberg FC (2014) Mephedrone, methylone and 3,4-methylenedioxypyrovalerone (MDPV) induce conditioned place preference in mice. Basic Clin Pharmacol Toxicol 115:411–416

    Article  CAS  PubMed  Google Scholar 

  • Kenyon EM (2012) Interspecies extrapolation. Methods Mol Biol 929:501–520

    Article  CAS  PubMed  Google Scholar 

  • Khattab NY, Amer G (1995) Undetected neuropsychophysiological sequelae of khat chewing in standard aviation medical examination. Aviat Space Environ Med 66:739–744

    CAS  PubMed  Google Scholar 

  • Kimani ST, Nyongesa AW (2008) Effects of single daily khat (Catha edulis) extract on spatial learning and memory in CBA mice. Behav Brain Res 195:192–197

    Article  PubMed  Google Scholar 

  • Kimani ST, Patel NB, Kioy PG (2016) Memory deficits associated with khat (Catha edulis) use in rodents. Metab Brain Dis 31:45–52

    Article  CAS  PubMed  Google Scholar 

  • Kish SJ, Boileau I, Callaghan RC, Tong J (2017) Brain dopamine neurone ‘damage’: methamphetamine users vs. Parkinson’s disease - a critical assessment of the evidence. Eur J Neurosci 45:58–66

    Article  PubMed  Google Scholar 

  • Kiyatkin EA (2014) State-dependent and environmental modulation of brain hyperthermic effects of psychoactive drugs of abuse. Temperature (Austin) 1:201–213

    Article  Google Scholar 

  • Kolanos R, Solis EJ, Sakloth F, De Felice LJ, Glennon RA (2013) “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Neurosci 4:1524–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacagnina MJ, Rivera PD, Bilbo SD (2017) Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology 42:156–177

    Article  CAS  PubMed  Google Scholar 

  • Lantz SM, Rosas-Hernandez H, Cuevas E, Robinson B, Rice KC, Fantegrossi WE, Imam SZ, Paule MG, Ali SF (2017) Monoaminergic toxicity induced by cathinone phthalimide: an in vitro study. Neurosci Lett 655:76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewitus GM, Konefal SC, Greenhalgh AD, Pribiag H, Augereau K, Stellwagen D (2016) Microglial TNF-α suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90:483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisek R, Xu W, Yuvasheva E, Chiu YT, Reitz AB, Liu-Chen LY, Rawls SM (2012) Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend 126:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftis JM, Janowsky A (2014) Neuroimmune basis of methamphetamine toxicity. Int Rev Neurobiol 118:165–197

    Article  PubMed  PubMed Central  Google Scholar 

  • London ED, Kohno M, Morales AM, Ballard ME (2015) Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 1628:174–185

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Arnau R, Martinez-Clemente J, Abad S, Pubill D, Camarasa J, Escubedo E (2014a) Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse. Psychopharmacology 231:3119–3129

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J (2014b) Serotonergic impairment and memory deficits in adolescent rats after binge exposure of methylone. J Psychopharmacol 28:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Arnau R, Martinez-Clemente J, Rodrigo T, Pubill D, Camarasa J, Escubedo E (2015) Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol 286:27–35

    Article  CAS  PubMed  Google Scholar 

  • Luethi D, Liechti ME, Krahenbuhl S (2017) Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 387:57–66

    Article  CAS  PubMed  Google Scholar 

  • Luethi D, Kolaczynska KE, Docci L, Krahenbuhl S, Hoener MC, Liechti ME (2018) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 134:4–12

    Article  CAS  PubMed  Google Scholar 

  • Marshall JF, O'Dell SJ (2012) Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci 35:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Clemente J, Lopez-Arnau R, Abad S, Pubill D, Escubedo E, Camarasa J (2014) Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One 9:e99002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga T, Morikawa Y, Kamata K, Shibata A, Miyazono H, Sasajima Y, Suenami K, Sato K, Takekoshi Y, Endo S, El-Kabbani O, Ikari A (2017) α-pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology 386:93–102

    Article  CAS  PubMed  Google Scholar 

  • Mayado A, Torres E, Gutierrez-Lopez MD, Colado MI, O'Shea E (2011) Increased interleukin-1beta levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA. J Neuroinflammation 8:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer FP, Schmid D, Holy M, Daws LC, Sitte HH (2018a) "Polytox" synthetic cathinone abuse: a potential role for organic cation transporter 3 in combined cathinone-induced efflux. Neurochem Int

  • Mayer FP, Schmid D, Owens WA, Gould GG, Apuschkin M, Kudlacek O, Salzer I, Boehm S, Chiba P, Williams PH, Wu HH, Gether U, Koek W, Daws LC, Sitte HH (2018b) An unsuspected role for organic cation transporter 3 in the actions of amphetamine. Neuropsychopharmacology

  • McConnell SE, O'Banion MK, Cory-Slechta DA, Olschowka JA, Opanashuk LA (2015) Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology 50:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miner NB, O'Callaghan JP, Phillips TJ, Janowsky A (2017) The combined effects of 3,4-methylenedioxymethamphetamine (MDMA) and selected substituted methcathinones on measures of neurotoxicity. Neurotoxicol Teratol 61:74–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moratalla R, Khairnar A, Simola N, Granado N, Garcia-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 155:149–170

    Article  CAS  PubMed  Google Scholar 

  • Moszczynska A, Callan SP (2017) Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther 362:474–488

    Article  CAS  PubMed  Google Scholar 

  • Motbey CP, Karanges E, Li KM, Wilkinson S, Winstock AR, Ramsay J, Hicks C, Kendig MD, Wyatt N, Callaghan PD, McGregor IS (2012) Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion. PLoS One 7:e45473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motbey CP, Clemens KJ, Apetz N, Winstock AR, Ramsey J, Li KM, Wyatt N, Callaghan PD, Bowen MT, Cornish JL, McGregor IS (2013) High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine. J Psychopharmacol 27:823–836

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Hoffman R, Al'Absi M (2014) Poor working memory and reduced blood pressure levels in concurrent users of khat and tobacco. Nicotine Tob Res 16:279–287

    Article  PubMed  Google Scholar 

  • Naseri G, Fazel A, Golalipour MJ, Haghir H, Sadeghian H, Mojarrad M, Hosseini M, Shahrokhi Sabzevar S, Beheshti F, Ghorbani A (2018) Exposure to mephedrone during gestation increases the risk of stillbirth and induces hippocampal neurotoxicity in mice offspring. Neurotoxicol Teratol 67:10–17

    Article  CAS  PubMed  Google Scholar 

  • Negus SS, Banks ML (2017) Decoding the structure of abuse potential for new psychoactive substances: structure-activity relationships for abuse-related effects of 4-substituted methcathinone analogs. Curr Top Behav Neurosci 32:119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver CF, Simmons SJ, Nayak SU, Smith GR, Reitz AB, Rawls SM (2018) Chemokines and ‘bath salts’: CXCR4 receptor antagonist reduces rewarding and locomotor-stimulant effects of the designer cathinone MDPV in rats. Drug Alcohol Depend 186:75–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pail PB, Costa KM, Leite CE, Campos MM (2015) Comparative pharmacological evaluation of the cathinone derivatives, mephedrone and methedrone, in mice. Neurotoxicology 50:71–80

    Article  CAS  PubMed  Google Scholar 

  • Palamar JJ, Salomone A, Vincenti M, Cleland CM (2016) Detection of “bath salts” and other novel psychoactive substances in hair samples of ecstasy/MDMA/“Molly” users. Drug Alcohol Depend 161:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantano F, Tittarelli R, Mannocchi G, Pacifici R, di Luca A, Busardo FP, Marinelli E (2017) Neurotoxicity induced by mephedrone: an up-to-date review. Curr Neuropharmacol 15:738–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira RB, Andrade PB, Valentao P (2015) A comprehensive view of the neurotoxicity mechanisms of cocaine and ethanol. Neurotox Res 28:253–267

    Article  CAS  PubMed  Google Scholar 

  • Potvin S, Pelletier J, Grot S, Hebert C, Barr AM, Lecomte T (2018) Cognitive deficits in individuals with methamphetamine use disorder: a meta-analysis. Addict Behav 80:154–160

    Article  PubMed  Google Scholar 

  • Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Hernandez H, Cuevas E, Lantz SM, Rice KC, Gannon BM, Fantegrossi WE, Gonzalez C, Paule MG, Ali SF (2016) Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells. Neurosci Lett 629:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewalia K, Watterson LR, Hryciw A, Belloc A, Ortiz JB, Olive MF (2018) Neurocognitive dysfunction following repeated binge-like self-administration of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 134:36–45

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, McNeill JH (2009) To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol 157:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE, Wigmore PM, Ebling FJ, Green AR, Fone KC, King MV (2013) Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol 23:1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Siedlecka-Kroplewska K, Szczerba A, Lipinska A, Slebioda T, Kmiec Z (2014) 3-Fluoromethcathinone, a structural analog of mephedrone, inhibits growth and induces cell cycle arrest in HT22 mouse hippocampal cells. J Physiol Pharmacol 65:241–246

    CAS  PubMed  Google Scholar 

  • Siedlecka-Kroplewska K, Wronska A, Stasilojc G, Kmiec Z (2018) The designer drug 3-fluoromethcathinone induces oxidative stress and activates autophagy in HT22 neuronal cells. Neurotox Res

  • Silva B, Fernandes C, Tiritan ME, Pinto MM, Valente MJ, Carvalho M, de Pinho PG, Remiao F (2016) Chiral enantioresolution of cathinone derivatives present in “legal highs”, and enantioselectivity evaluation on cytotoxicity of 3,4-methylenedioxypyrovalerone (MDPV). Forensic Toxicol 34:372–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmler LD, Liechti ME (2017) Interactions of cathinone NPS with human transporters and receptors in transfected cells. Curr Top Behav Neurosci 32:49–72

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (2016) In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J Pharmacol Exp Ther 357:134–144

    Article  CAS  PubMed  Google Scholar 

  • Simmons SJ, Leyrer-Jackson JM, Oliver CF, Hicks C, Muschamp JW, Rawls SM, Olive MF (2018) Dark classics in chemical neuroscience: cathinone-derived psychostimulants. ACS Chem Neurosci

  • Soleimani SMA, Ekhtiari H, Cadet JL (2016) Drug-induced neurotoxicity in addiction medicine: from prevention to harm reduction. Prog Brain Res 223:19–41

    Article  Google Scholar 

  • Stuber GD, Hopf FW, Tye KM, Chen BT, Bonci A (2010) Neuroplastic alterations in the limbic system following cocaine or alcohol exposure. Curr Top Behav Neurosci 3:3–27

    Article  PubMed  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354

    Article  CAS  PubMed  Google Scholar 

  • Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45

    Article  CAS  PubMed  Google Scholar 

  • Valente MJ, Araujo AM, Silva R, Bastos Mde L, Carvalho F, Guedes de Pinho P, Carvalho M (2016) 3,4-Methylenedioxypyrovalerone (MDPV): in vitro mechanisms of hepatotoxicity under normothermic and hyperthermic conditions. Arch Toxicol 90:1959–1973

    Article  CAS  PubMed  Google Scholar 

  • Valente MJ, Amaral C, Correia-da-Silva G, Duarte JA, Bastos ML, Carvalho F, Guedes de Pinho P, Carvalho M (2017a) Methylone and MDPV activate autophagy in human dopaminergic SH-SY5Y cells: a new insight into the context of beta-keto amphetamines-related neurotoxicity. Arch Toxicol 91:3663–3676

    Article  CAS  PubMed  Google Scholar 

  • Valente MJ, Bastos ML, Fernandes E, Carvalho F, Guedes de Pinho P, Carvalho M (2017b) Neurotoxicity of β-keto amphetamines: deathly mechanisms elicited by methylone and MDPV in human dopaminergic SH-SY5Y cells. ACS Chem Neurosci 8:850–859

    Article  CAS  PubMed  Google Scholar 

  • Wagner GC, Preston K, Ricaurte GA, Schuster CR, Seiden LS (1982) Neurochemical similarities between d,l-cathinone and d-amphetamine. Drug Alcohol Depend 9:279–284

    Article  CAS  PubMed  Google Scholar 

  • Weed PF, Leonard ST, Sankaranarayanan A, Winsauer PJ (2014) Estradiol administration to ovariectomized rats potentiates mephedrone-induced disruptions of nonspatial learning. J Exp Anal Behav 101:303–315

    Article  PubMed  Google Scholar 

  • Weinstein AM, Rosca P, Fattore L, London ED (2017) Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Front Psych 8:156

    Article  Google Scholar 

  • Wojcieszak J, Andrzejczak D, Woldan-Tambor A, Zawilska JB (2016) Cytotoxic activity of pyrovalerone derivatives, an emerging group of psychostimulant designer cathinones. Neurotox Res 30:239–250

    Article  CAS  PubMed  Google Scholar 

  • Wood S, Sage JR, Shuman T, Anagnostaras SG (2014) Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol Rev 66:193–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright MJ Jr, Vandewater SA, Angrish D, Dickerson TJ, Taffe MA (2012) Mephedrone (4-methylmethcathinone) and d-methamphetamine improve visuospatial associative memory, but not spatial working memory, in rhesus macaques. Br J Pharmacol 167:1342–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaami S, Giorgetti R, Pichini S, Pantano F, Marinelli E, Busardo FP (2018) Synthetic cathinones related fatalities: an update. Eur Rev Med Pharmacol Sci 22:268–274

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Public Health Service grant DA042172 from the National Institute on Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Foster Olive.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article belongs to a Special Issue on Bath Salts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leyrer-Jackson, J.M., Nagy, E.K. & Olive, M.F. Cognitive deficits and neurotoxicity induced by synthetic cathinones: is there a role for neuroinflammation?. Psychopharmacology 236, 1079–1095 (2019). https://doi.org/10.1007/s00213-018-5067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5067-5

Keywords

Navigation