Skip to main content

Advertisement

Log in

Separate and combined impact of acute naltrexone and alprazolam on subjective and physiological effects of oral d-amphetamine in stimulant users

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds.

Objectives

The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone.

Methods

Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected.

Results

Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone.

Conclusions

The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abernethy DR, Greenblatt DJ, Divoll M et al (1983) Pharmacokinetics of alprazolam. J Clin Psychiatry 44:45–47

    CAS  PubMed  Google Scholar 

  • Ambrose LM, Unterwald EM, Van Bockstaele EJ (2004) Ultrastructural evidence for co-localization of dopamine D2 and mu-opioid receptors in the rat dorsolateral striatum. Anat Rec 279:583–591

    Article  CAS  Google Scholar 

  • Angrist B, Corwin J, Bartlik B, Cooper T (1987) Early pharmacokinetics and clinical effects of oral d-amphetamine in normal subjects. Biol Psychiatry 22:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Anton RF, O’Malley SS, Ciraulo DA et al (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study. A randomized controlled trial. JAMA 295:2003–2017

    Article  CAS  PubMed  Google Scholar 

  • Barrett AC, Negus SS, Mello NK, Caine SB (2005) Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats. J Pharmacol Exp Ther 315:858–871

    Article  CAS  PubMed  Google Scholar 

  • Chouinard G (2004) Issues in the clinical use of benzodiazepines: potency, withdrawal, and rebound. J Clin Psychiatry 65(Suppl 5):7–12

    CAS  PubMed  Google Scholar 

  • Churchill L, Dilts RP, Kalivas PW (1992) Autoradiographic localization of gamma-aminobutyric acid receptors within the ventral tegmental area. Neurochem Res 17:101–106

    Article  CAS  PubMed  Google Scholar 

  • Comer SD, Mogali S, Saccone PA et al (2013) Effects of acute oral naltrexone on the subjective physiological effects of oral d-amphetamine and smoked cocaine in cocaine abusers. Neuropsychopharmacology 38:2427–2438

    Google Scholar 

  • Dettmar PW, Cowan A, Walter DS (1978) Naloxone antagonizes behavioural effects of d-amphetamine in mice and rats. Neuropharmacology 17:1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Dewey SL, Chaurasia CS, Chen CE et al (1997) GABAergic attenuation of cocaine-induced dopamine release and locomotor activity. Synapse 25:393–398

    Article  CAS  PubMed  Google Scholar 

  • Ehrman RN, Robbins SJ, Bromwell MA, Lankford ME, Monterosso JR, O’Brien CP (2002) Comparing attentional bias to smoking cues in current smokers, former smokers, and non-smokers using a dot-probe task. Drug Alcohol Depend 67:185–191

    Article  PubMed  Google Scholar 

  • Elkashef A, Vocci F, Hanson G, White J, Wickes W, Tiihonen J (2008) Pharmacotherapy of methamphetamine addiction: an update. Subst Abuse 29:31–49

    Article  Google Scholar 

  • Ermer JC, Dennis K, Haffey MB et al (2011) Intranasal versus oral administration of lisdexamfetamine dimesylate: a randomized, open-label, two-period, crossover, single-dose, single-centre pharmacokinetic study in healthy adult men. Clin Drug Investig 31:357–370

    Article  CAS  PubMed  Google Scholar 

  • Fillmore MT, Rush CR, Marczinski CA (2003) Effects of d-amphetamine on behavioral control in stimulant abusers: the role of prepotent response tendencies. Drug Alcohol Depend 71:143–152

    Article  CAS  PubMed  Google Scholar 

  • Garbutt JC (2010) Efficacy and tolerability of naltrexone in the management of alcohol dependence. Curr Pharm Des 16:2091–2097

    Article  CAS  PubMed  Google Scholar 

  • Gatch MB, Selvig M, Forster MJ (2005) GABAergic modulation of the discriminative-stimulus effects of methamphetamine. Behav Pharmacol 16:261–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goeders NE, Guerin GF (2008) Effects of the combination of metyrapone and oxazepam on cocaine and food self-administration in rats. Pharmacol Biochem Behav 91:181–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goeders NE, McNulty MA, Mirkis S, McAllister KH (1989) Chlordiazepoxide alters intravenous cocaine self-administration in rats. Pharmacol Biochem Behav 33:859–866

    Article  CAS  PubMed  Google Scholar 

  • Goeders NE, McNulty MA, Guerin GF (1993) Effects of alprazolam on intravenous cocaine self-administration in rats. Pharmacol Biochem Behav 44:471–474

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt DJ, Wright CE (1993) Clinical pharmacokinetics of alprazolam. Clin Pharmacokinet 24:453–471

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt DJ, Divoll M, Abernethy DR et al (1983) Clinical pharmacokinetics of the newer benzodiazepines. Clin Pharmacokinet 8:233–252

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RR, Lamb RJ, Ator NA, Roache JD, Brady JV (1985) Relative abuse liability of triazolam: experimental assessment in animals and humans. Neurosci Biobehav Rev 9:133–151

    Google Scholar 

  • Griffiths RR, Bigelow GE, Ator NA (2003) Principles of initial experimental drug abuse liability assessment in humans. Drug Alcohol Depend 70:S41–S54

    Article  PubMed  Google Scholar 

  • Haggkvist J, Lindholm S, Franck J (2009) The effect of naltrexone on amphetamine-induced conditioned place preference and locomotor behaviour in the rat. Addict Biol 14:260–269

    Article  CAS  PubMed  Google Scholar 

  • Hollister LE, Johnson K, Boukhabza D, Gillespie HK (1981) Aversive effects of naltrexone in subjects not dependent on opiates. Drug Alcohol Depend 8:37–41

    Article  CAS  PubMed  Google Scholar 

  • Holtzman SG (1974) Behavioral effects of separate and combined administration of naloxone and d-amphetamine. J Pharmacol Exp Ther 189:51–60

    CAS  PubMed  Google Scholar 

  • Hooks MS, Jones DN, Justice JB Jr, Holtzman SG (1992) Naloxone reduces amphetamine-induced stimulation of locomotor activity and in vivo dopamine release in the striatum and nucleus accumbens. Pharmacol Biochem Behav 42:765–770

    Article  CAS  PubMed  Google Scholar 

  • Janssen SA, Arntz A (1999) No interactive effects of naltrexone and benzodiazepines on pain during phobic fear. Behav Res Ther 37:77–86

    Article  CAS  PubMed  Google Scholar 

  • Jayaram-Lindström N, Wennberg P, Hurd YL, Franck J (2004) Effects of naltrexone on the subjective response to amphetamine in healthy volunteers. J Clin Psychopharmacol 24:665–669

    Article  PubMed  Google Scholar 

  • Jayaram-Lindström N, Hammarberg A, Beck O, Franck J (2008a) Naltrexone for the treatment of amphetamine dependence: a randomized, placebo-controlled trial. Am J Psychiatry 165:1442–1448

    Article  PubMed  Google Scholar 

  • Jayaram-Lindström N, Konstenius M, Eksborg S, Beck O, Hammarberg A, Franck J (2008b) Naltrexone attenuates the subjective effects of amphetamine in patients with amphetamine dependence. Neuropsychopharmacology 33:1856–1863

    Article  PubMed  Google Scholar 

  • Jimenez-Gomez C, Winger G, Dean RL, Deaver DR, Woods JH (2010) Naltrexone decreases D-amphetamine and ethanol self-administration in rhesus monkeys. Behav Pharmacol 22:87–90

    Article  Google Scholar 

  • Johanson CE, Lundahl LH, Lockhard N, Schubiner H (2006) Intravenous cocaine discrimination in humans. Exp Clin Psychopharmacol 14:99–108

    Article  CAS  PubMed  Google Scholar 

  • Kablinger AS, Lindner MA, Casso S et al (2012) Effects of the combination of metyrapone and oxazepam on cocaine craving and cocaine taking: a double-blind, randomized, placebo-controlled pilot study. J Psychopharmacol 26:973–981

    Article  PubMed  Google Scholar 

  • Karila L, Weinstein A, Aubin HJ, Benyamina A, Reynaud M, Batki SL (2010) Pharmacological approaches to methamphetamine dependence: a focused review. Br J Clin Pharmacol 69:578–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb RJ, Henningfield JE (1994) Human d-amphetamine drug discrimination: methamphetamine and hydromorphone. J Exp Anal Behav 61:169–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MC, Wagner HN Jr, Tanada S, Frost JJ, Bice AN, Dannals RF (1988) Duration of occupancy of opiate receptors by naltrexone. J Nucl Med 29:1207–1211

    CAS  PubMed  Google Scholar 

  • Lejuez CW, Read JP, Kahler CW et al (2002) Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Taking (BART). J Exp Psychol Appl 8:75–84

    Article  CAS  PubMed  Google Scholar 

  • Lile JA, Stoops WW, Glaser PEA, Hays LR, Rush CR (2011a) Subjective and physiological effects of acute intranasal methamphetamine during extended-release alprazolam maintenance. Drug Alcohol Depend 119:187–193

    Google Scholar 

  • Lile JA, Stoops WW, Glaser PEA, Hays LR, Rush CR (2011b) Discriminative stimulus, subject-rated and cardiovascular effects of cocaine alone and in combination with aripiprazole in humans. J Psychopharmacol 25:1469–1479

    Google Scholar 

  • Liu S, Lane SD, Schmitz JM, Waters AJ, Cunningham KA, Moeller FG (2011) Relationship between attentional bias to cocaine-related stimuli and impulsivity in cocaine-dependent subjects. Am J Drug Alcohol Abuse 37:117–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makris AP, Rush CR, Frederich RC, Taylor AC, Kelly TH (2007) Behavioral and subjective effects of d-amphetamine and modafinil in humans. Exp Clin Psychopharmacol 15:123–133

    Article  CAS  PubMed  Google Scholar 

  • McLeod DR, Griffiths RR, Bigelow GE, Yingling JE (1982) An automated version of the digit symbol substitution test (DSST). Behav Res Methods Instrum 14:463–466

    Article  Google Scholar 

  • Meltzer HY (2013) Update on typical and atypical antipsychotic drugs. Annu Rev Med 64:393–406

    Article  CAS  PubMed  Google Scholar 

  • Meyer MC, Straughn AB, Lo MW, Schary WL, Whitney CC (1984) Bioequivalence, dose-proportionality, and pharmacokinetics of naltrexone after oral administration. J Clin Psychiatry 45:15–19

    CAS  PubMed  Google Scholar 

  • Mumford GK, Evans SM, Fleishaker JC, Griffiths RR (1995a) Alprazolam absorption kinetics affects abuse liability. Clin Pharmacol Ther 57:356–365

    Article  CAS  PubMed  Google Scholar 

  • Mumford GK, Rush CR, Griffiths RR (1995b) Abecarnil and alprazolam in humans: behavioral, subjective and reinforcing effects. J Pharmacol Exp Ther 272:570–580

    CAS  PubMed  Google Scholar 

  • Negus SS, Mello NK, Fivel PA (2000) Effects of GABA agonists and the GABA-A receptor modulators on cocaine discrimination in rhesus monkeys. Psychopharmacology 152:398–407

    Article  CAS  PubMed  Google Scholar 

  • Oliveto AH, Bickel WK, Hughes JR, Shea PJ, Higgins ST, Fenwick JW (1992) Caffeine drug discrimination in humans: acquisition, specificity, and correlation with self-reports. J Pharmacol Exp Ther 261:885–894

    CAS  PubMed  Google Scholar 

  • Oliveto AH, McCance-Katz E, Singha A, Hameedi F, Kosten TR (1998) Effects of d-amphetamine and caffeine in humans under a cocaine discrimination procedure. Behav Pharmacol 9:207–217

    CAS  PubMed  Google Scholar 

  • Pfohl DN, Allen JI, Atkinson RL et al (1986) Naltrexone hydrochloride (Trexan): a review of serum transaminase elevations at high dosage. NIDA Res Monogr 67:66–72

    CAS  PubMed  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  CAS  PubMed  Google Scholar 

  • Pollard H, Llorens C, Bonnet JJ, Costentin J, Schwartz JC (1977) Opiate receptors on mesolimbic dopaminergic neurons. Neurosci Lett 7:295–299

    Article  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM et al (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  CAS  PubMed  Google Scholar 

  • Rush CR, Higgins ST, Bickel WK, Hughes JR (1993) Abuse liability of alprazolam relative to other commonly used benzodiazepines: a review. Neurosci Biobehav Rev 17:277–285

    Article  CAS  PubMed  Google Scholar 

  • Rush CR, Stoops WW, Hays LR, Glaser PE, Hays LS (2003) Risperidone attenuates the discriminative-stimulus effects of d-amphetamine in humans. J Pharmacol Exp Ther 306:195–204

    Article  CAS  PubMed  Google Scholar 

  • Rush CR, Stoops WW, Wagner FP, Hays LR, Glaser PEA (2004) Alprazolam attenuates the behavioral effects of d-amphetamine in humans. J Clin Psychopharmacol 24:410–420

    Article  CAS  PubMed  Google Scholar 

  • Rush CR, Vansickel AR, Lile JA, Stoops WW (2009) Evidence-based treatment of amphetamine dependence: behavioral and pharmacological approaches. In: Cohen L, Collins FL, Young AM, McChargue DE, Leffingwell TR, Cook KL (eds) Pharmacology and treatment of substance abuse: evidence- and outcome-based perspectives. Routledge, Taylor and Francis Group, New York, pp 335–358

    Google Scholar 

  • Schad CA, Justice JB Jr, Holtzman SG (1995) Naloxone reduces the neurochemical and behavioral effects of amphetamine but not those of cocaine. Eur J Pharmacol 275:9–16

    Article  CAS  PubMed  Google Scholar 

  • Sevak RJ, Stoops WW, Hays LR, Rush CR (2009) Discriminative stimulus and subject-rated effects of methamphetamine, d-amphetamine, methylphenidate, and triazolam in methamphetamine-trained humans. J Pharmacol Exp Ther 328:1007–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sevak RJ, Stoops WW, Glaser PEAG, Hays LR, Rush CR (2010) Reinforcing effects of d-amphetamine: influence of novel ratios on a progressive-ratio schedule. Behav Pharmacol 21:745–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RB, Kroboth PD (1987) Influence of dosing regimen on alprazolam and metabolite serum concentrations and tolerance to sedative and psychomotor effects. Psychopharmacology 93:105–112

    Article  CAS  PubMed  Google Scholar 

  • Stoops WW, Glaser PEA, Fillmore MT, Rush CR (2004) Reinforcing, subject-rated, performance and physiological effects of methylphenidate and d-amphetamine in stimulant abusing humans. J Psychopharmacol 18:534–543

    Article  CAS  PubMed  Google Scholar 

  • Stoops WW, Vansickel AR, Lile JA, Rush CR (2007) Acute d-amphetamine pretreatment does not alter stimulant self-administration in humans. Pharmacol Biochem Behav 87:20–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality (2012) Treatment Episode Data Set (TEDS): 2000–2010. State Admissions to Substance Abuse Treatment Services. DASIS Series S-63, HHS Publication No. (SMA) 12–4729. Rockville, MD

  • Tiihonen J, Krupitsky E, Verbitskaya E et al (2012) Naltrexone implant for the treatment of polydrug dependence: a randomized controlled trial. Am J Psychiatry 169:531–536

    Article  PubMed  Google Scholar 

  • Trujillo KA, Belluzzi JD, Stein L (1991) Naloxone blockade of amphetamine place preference conditioning. Psychopharmacology 104:265–274

    Article  CAS  PubMed  Google Scholar 

  • United Nations Office of Drugs and Crime (2012) World Drug Report 2012. United Nations Vienna, pp 7 – 9

  • Volpicelli JR, Alterman AI, Hayashida M et al (1992) Naltrexone in the treatment of alcohol dependence. Arch Gen Psychiatry 49:876–880

    Article  CAS  PubMed  Google Scholar 

  • Walsh SL, Sullivan JT, Preston KL, Garner JE, Bigelow GE (1996) Effects of naltrexone on response to intravenous cocaine, hydromorphone and their combination in humans. J Pharmacol Exp Ther 279:524–538

    CAS  PubMed  Google Scholar 

  • Weerts EM, Froestl W, Griffiths RR (2005) Effects of GABAergic modulators on food and cocaine self-administration in baboons. Drug Alcohol Depend 80:369–376

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

This research and the preparation of the manuscript were supported by NIDA grant R01 DA025591 to CRR, T32DA035200 to CRR and KRM, and K02 DA031766 to JAL. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors declare no conflicts of interest relevant to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Rush.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig 1

(Supplementary material) Mean peak subject ratings for oral d-amphetamine on the items Irregular/Heart Racing, Nervous/Anxious, and Shaky/Jittery from the Drug Effect Questionnaire following administration of d-amphetamine and the four pretreatment conditions. An asterisk indicates a significant difference from the corresponding d-amphetamine dose under the placebo pretreatment condition. Other details are as in Fig. 1 (DOC 83 kb)

Fig. 2

(Supplementary material) Mean digits attempted and completed during the DSST following administration of d-amphetamine and the four pretreatment conditions. Other details are as in Figs. 1 and 2 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, K.R., Lile, J.A., Stoops, W.W. et al. Separate and combined impact of acute naltrexone and alprazolam on subjective and physiological effects of oral d-amphetamine in stimulant users. Psychopharmacology 231, 2741–2750 (2014). https://doi.org/10.1007/s00213-014-3449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3449-x

Keywords

Navigation