Skip to main content
Log in

The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuroactive derivatives of steroid hormones, neurosteroids, can act on GABAA receptors (GABAARs) to potentiate the effects of GABA on these receptors. Neurosteroids become elevated to physiologically relevant levels under conditions characterized by increased steroid hormones. There is considerable evidence for plasticity of GABAARs associated with altered levels of neurosteroids which may counteract the fluctuations in the levels of these allosteric modulators.

Objectives

The objective of this review is to summarize the current literature on GABAAR plasticity under conditions characterized by alterations in neurosteroid levels, such as over the estrous cycle, during puberty, and throughout pregnancy and the postpartum period.

Results

The expression of specific GABAAR subunits is altered over the estrous cycle, at puberty, and throughout pregnancy and the postpartum period. Inability to regulate δ subunit-containing GABAARs throughout pregnancy and the postpartum period is associated with depression-like behavior restricted to the postpartum period.

Conclusions

GABAAR plasticity associated with alterations in neurosteroid levels represents a homeostatic compensatory mechanism to maintain an ideal level of inhibition to offset the potentiating effects of neurosteroids on GABAergic inhibition. Failure to properly regulate GABAARs under conditions of altered neurosteroid levels may increase vulnerability to mood disorders, such as premenstrual syndrome (PMS), premenstrual dysphoric disorder (PMDD), and postpartum depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abramian AM, Comenencia-Ortiz E, Vithlani M, Tretter EV, Sieghart W, Davies PA, Moss SJ (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285:41795–41805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103:14602–14607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S (2009) The influence of the membrane on neurosteroid actions at GABA(A) receptors. Psychoneuroendocrinology 34(Suppl 1):S59–S66

    CAS  PubMed  Google Scholar 

  • Aldahan MI, Tehrani MHJ, Thalmann RH (1994) Regulation of gamma-aminobutyric acid(B) (Gaba(B)) receptors in cerebral-cortex during the estrous-cycle. Brain Res 640:33–39

    CAS  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Andreen L, Sundstrom-Poromaa I, Bixo M, Andersson A, Nyberg S, Backstrom T (2005) Relationship between allopregnanolone and negative mood in postmenopausal women taking sequential hormone replacement therapy with vaginal progesterone. Psychoneuroendocrinology 30:212–224

    CAS  PubMed  Google Scholar 

  • Andreen L, Sundstrom-Poromaa I, Bixo M, Nyberg S, Backstrom T (2006) Allopregnanolone concentration and mood—a bimodal association in postmenopausal women treated with oral progesterone. Psychopharmacology (Berlin) 187:209–221

    CAS  Google Scholar 

  • Andreen L, Nyberg S, Turkmen S, Van WG, Fernandez G, Backstrom T (2009) Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology 34:1121–1132

    CAS  PubMed  Google Scholar 

  • Backstrom T, Andersson A, Andree L, Birzniece V, Bixo M, Bjorn I, Haage D, Isaksson M, Johansson IM, Lindblad C, Lundgren P, Nyberg S, Odmark IS, Stromberg J, Sundstrom-Poromaa I, Turkmen S, Wahlstrom G, Wang MD, Wohlback AC, Zhu D, Zingmark E (2003) Pathogenesis in menstrual cycle-linked CNS disorders. Steroids Nerv Syst 1007:42–53

    Google Scholar 

  • Backstrom T, Bixo M, Johansson M, Nyberg S, Ossewaarde L, Ragagnin G, Savic I, Stromberg J, Timby E, Van BF, Van WG (2013) Allopregnanolone and mood disorders. Prog Neurobiol 150(1):90–100

    Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    CAS  PubMed  Google Scholar 

  • Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 29:12757–12763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianchi MT, Macdonald RL (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943

    CAS  PubMed  Google Scholar 

  • Bicikova M, Putz Z, Hill M, Hampl R, Diebbelt L, Tallova J, Starka L (1998) Serum levels of neurosteroid allopregnanolone in patients with premenstrual syndrome and patients after thyroidectomy. Endocr Regul 32:87–92

    CAS  PubMed  Google Scholar 

  • Bitran D, Purdy RH, Kellogg CK (1993) Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and Gaba(A) receptor function. Pharmacol Biochem Behav 45:423–428

    CAS  PubMed  Google Scholar 

  • Bitran D, Dugan M, Renda P, Ellis R, Foley M (1999) Anxiolytic effects of the neuroactive steroid pregnanolone (3 alpha-OH-5 beta-pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Res 850:217–224

    CAS  PubMed  Google Scholar 

  • Bjorn I, Sundstrom-Poromaa I, Bixo M, Nyberg S, Backstrom G, Backstrom T (2003) Increase of estrogen dose deteriorates mood during progestin phase in sequential hormonal therapy. J Clin Endocrinol Metab 88:2026–2030

    PubMed  Google Scholar 

  • Brack KE, Lovick TA (2007) Neuronal excitability in the periaqueductal grey matter during the estrous cycle in female Wistar rats. Neuroscience 144:325–335

    CAS  PubMed  Google Scholar 

  • Brummelte S, Galea LA (2010) Depression during pregnancy and postpartum: contribution of stress and ovarian hormones. Prog Neuropsychopharmacol Biol Psychiatry 34:766–776

    CAS  PubMed  Google Scholar 

  • Carver CM, Reddy DS (2013) Neurosteroid interactions with synaptic and extrasynaptic GABAA receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berlin) 230:151–188

    CAS  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95:13284–13289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham RL, Lumia AR, McGinnis MY (2012) Androgen receptors, sex behavior, and aggression. Neuroendocrinology 96:131–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30:259–301

    CAS  PubMed  Google Scholar 

  • Fadalti M, Petraglia F, Luisi S, Bernardi F, Casarosa E, Ferrari E, Luisi M, Saggese G, Genazzani AR, Bernasconi S (1999) Changes of serum allopregnanolone levels in the first 2 years of life and during pubertal development. Pediatr Res 46:323–327

    CAS  PubMed  Google Scholar 

  • Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    CAS  PubMed  Google Scholar 

  • Farrar SJ, Whiting PJ, Bonnert TP, McKernan RM (1999) Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J Biol Chem 274:10100–10104

    CAS  PubMed  Google Scholar 

  • Ferando I, Mody I (2013) Altered gamma oscillations during pregnancy through loss of delta subunit-containing GABA(A) receptors on parvalbumin interneurons. Front Neural Circ 7:144

    Google Scholar 

  • Follesa P, Floris S, Tuligi G, Mostallino MC, Concas A, Biggio G (1998) Molecular and functional adaptation of the GABA(A) receptor complex during pregnancy and after delivery in the rat brain. Eur J Neurosci 10:2905–2912

    CAS  PubMed  Google Scholar 

  • Frye CA, Hirst JJ, Brunton PJ, Russell JA (2011) Neurosteroids for a successful pregnancy. Stress 14:1–5

    PubMed  Google Scholar 

  • Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, Nappi RE, Luisi S, Palumbo M, Purdy RH, Luisi M (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab 83:2099–2103

    CAS  PubMed  Google Scholar 

  • Gilbert Evans SE, Ross LE, Sellers EM, Purdy RH, Romach MK (2005) 3alpha-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol Endocrinol 21:268–279

    CAS  PubMed  Google Scholar 

  • Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocr Rev 18:502–519

    CAS  PubMed  Google Scholar 

  • Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A 96:13512–13517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths J, Lovick T (2005a) Withdrawal from progesterone increases expression of alpha4, beta1, and delta GABA(A) receptor subunits in neurons in the periaqueductal gray matter in female Wistar rats. J Comp Neurol 486:89–97

    CAS  PubMed  Google Scholar 

  • Griffiths JL, Lovick TA (2005b) GABAergic neurones in the rat periaqueductal grey matter express alpha4, beta1 and delta GABAA receptor subunits: plasticity of expression during the estrous cycle. Neuroscience 136:457–466

    CAS  PubMed  Google Scholar 

  • Gulinello M, Gong QH, Li X, Smith SS (2001) Short-term exposure to a neuroactive steroid increases alpha 4 GABA(A) receptor subunit levels in association with increased anxiety in the famale rat. Brain Res 910:55–66

    CAS  PubMed  Google Scholar 

  • Handa RJ, Mani SK, Uht RM (2012) Estrogen receptors and the regulation of neural stress responses. Neuroendocrinology 96:111–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haning RV Jr, Tantravahi U, Zhao Q, Hackett RJ, Canick JA (1996) 5alpha-reductase 1 and 2 expression and activity in human ovarian follicles, stroma and corpus luteum as compared to neonatal foreskin. J Steroid Biochem Mol Biol 59:199–204

    CAS  PubMed  Google Scholar 

  • Hengen KB, Nelson NR, Stang KM, Johnson SM, Crader SM, Watters JJ, Mitchell GS, Behan M (2012) Increased GABA(A) receptor epsilon-subunit expression on ventral respiratory column neurons protects breathing during pregnancy. PLoS One 7:e30608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hewitt SA, Wamsteeker JI, Kurz EU, Bains JS (2009) Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat Neurosci 12:438–443

    CAS  PubMed  Google Scholar 

  • Hill M, Cibula D, Havlikova H, Kancheva L, Fait T, Kancheva R, Parizek A, Starka L (2007) Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J Steroid Biochem Mol Biol 105:166–175

    CAS  PubMed  Google Scholar 

  • Hortnagl H, Tasan RO, Wieselthaler A, Kirchmair E, Sieghart W, Sperk G (2013) Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain. Neuroscience 236:345–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    CAS  PubMed  Google Scholar 

  • Hosie AM, Clarke L, Da SH, Smart TG (2009) Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 56:149–154

    CAS  PubMed  Google Scholar 

  • Houston CM, McGee TP, Mackenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG (2012) Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs? J Neurosci 32:3887–3897

    CAS  PubMed  Google Scholar 

  • Hsu FC, Smith SS (2003) Progesterone withdrawal reduces paired-pulse inhibition in rat hippocampus: dependence on GABA(A) receptor alpha 4 subunit upregulation. J Neurophysiol 89:186–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahle KT, Rinehart J, Lifton RP (2010) Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta 1802:1150–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahle KT, Deeb TZ, Puskarjov M, Silayeva L, Liang B, Kaila K, Moss SJ (2013) Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2. Trends Neurosci 36:726–737

    CAS  PubMed  Google Scholar 

  • Kim BG, Cho JH, Choi IS, Lee MG, Jang IS (2011) Modulation of presynaptic GABA(A) receptors by endogenous neurosteroids. Br J Pharmacol 164:1698–1710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuver A, Shen H, Smith SS (2012) Regulation of the surface expression of alpha4beta2delta GABAA receptors by high efficacy states. Brain Res 1463:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lagrange A (2006) Dancing the delta shuffle: neurosteroids regulate GABAA receptor expression. Epilepsy Curr 6:14–17

    PubMed Central  PubMed  Google Scholar 

  • Lambert JJ, Cooper MA, Simmons RD, Weir CJ, Belelli D (2009) Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34(Suppl 1):S48–S58

    CAS  PubMed  Google Scholar 

  • Lee V, Maguire J (2013) Impact of inhibitory constraint of interneurons on neuronal excitability. J Neurophysiol 110(11):2520–2535

    CAS  PubMed  Google Scholar 

  • Lee HH, Walker JA, Williams JR, Goodier RJ, Payne JA, Moss SJ (2007) Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2. J Biol Chem 282:29777–29784

    CAS  PubMed  Google Scholar 

  • Lee HH, Jurd R, Moss SJ (2010) Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2. Mol Cell Neurosci 45:173–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovick TA (2012) Estrous cycle and stress: influence of progesterone on the female brain. Braz J Med Biol Res 45:314–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luisi S, Petraglia F, Benedetto C, Nappi RE, Bernardi F, Fadalti M, Reis FM, Luisi M, Genazzani AR (2000) Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab 85:2429–2433

    CAS  PubMed  Google Scholar 

  • Mackenzie G, Maguire J (2013) Neurosteroids and GABAergic signaling in health and disease. BioMol Concepts 4:29–42

    CAS  Google Scholar 

  • Maguire J, Mody I (2008) GABA(A)R plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire J, Mody I (2009) Steroid hormone fluctuations and GABA(A)R plasticity. Psychoneuroendocrinology 34(suppl 1):18844890

    Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8(6):797–804

    CAS  PubMed  Google Scholar 

  • Maguire J, Ferando I, Simonsen C, Mody I (2009) Excitability changes related to GABAA receptor plasticity during pregnancy. J Neurosci 29:9592–9601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid-hormone metabolites are barbiturate-like modulators of the Gaba eeceptor. Science 232:1004–1007

    CAS  PubMed  Google Scholar 

  • Mann EO, Mody I (2010) Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons. Nat Neurosci 13:205–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mannan MA, O'Shaughnessy PJ (1988) Ovarian steroid metabolism during post-natal development in the normal mouse and in the adult hypogonadal (hpg) mouse. J Reprod Fertil 82:727–734

    CAS  PubMed  Google Scholar 

  • Marjoribanks J, Brown J, O'Brien PM, Wyatt K (2013) Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev 6, CD001396

    PubMed  Google Scholar 

  • Martin JV, Williams DB (1995) Benzodiazepine binding varies with stage of estrous-cycle in unwashed membranes from mouse-brain. Life Sci 57:1903–1909

    CAS  PubMed  Google Scholar 

  • Massanari M, Novitsky J, Reinstein LJ (1997) Paradoxical reactions in children associated with midazolam use during endoscopy. Clin Pediatr (Phila) 36:681–684

    CAS  Google Scholar 

  • Mellon SH, Griffin LD (2002) Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 13:35–43

    CAS  PubMed  Google Scholar 

  • Micevych P, Sinchak K (2008) Estradiol regulation of progesterone synthesis in the brain. Mol Cell Endocrinol 290:44–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF (2003) Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav 44:242–257

    CAS  PubMed  Google Scholar 

  • Mihalek RM, Banerjee PK, Korpi ER, Quinlan JJ, Firestone LL, Mi ZP, Lagenaur C, Tretter V, Sieghart W, Anagnostaras SG, Sage JR, Fanselow MS, Guidotti A, Spigelman I, Li ZW, DeLorey TM, Olsen RW, Homanics GE (1999) Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A 96:12905–12910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molina-Hernandez M, Tellez-Alcantara NP (2001) Estrus variation in anticonflict effects of midazolam microinjected into septal nuclei in female Wistar rats. Pharmacol Biochem Behav 68:531–537

    CAS  PubMed  Google Scholar 

  • Molina-Hernandez M, Contreras CM, Tellez-Alcantara P (2001) Diazepam increases the number of punished responses in a conflict-operant paradigm during late proestrus and estrus in the Wistar rat. Neuropsychobiology 43:29–33

    CAS  PubMed  Google Scholar 

  • Monteleone P, Luisi S, Tonetti A, Bernardi F, Genazzani AD, Luisi M, Petraglia F, Genazzani AR (2000) Allopregnanolone concentrations and premenstrual syndrome. Eur J Endocrinol 142:269–273

    CAS  PubMed  Google Scholar 

  • Nakamura NH, Rosell DR, Akama KT, Mcewen BS (2004) Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 80:308–323

    CAS  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Updat Pharmacol Rev 60:243–260

    CAS  Google Scholar 

  • Ottander U, Poromaa IS, Bjurulf E, Skytt A, Backstrom T, Olofsson JI (2005) Allopregnanolone and pregnanolone are produced by the human corpus luteum. Mol Cell Endocrinol 239:37–44

    CAS  PubMed  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive Steroids. FASEB J 6:2311–2322

    CAS  PubMed  Google Scholar 

  • Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K–Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271:16245–16252

    CAS  PubMed  Google Scholar 

  • Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206

    CAS  PubMed  Google Scholar 

  • Pearson Murphy BE, Steinberg SI, Hu FY, Allison CM (2001) Neuroactive ring A-reduced metabolites of progesterone in human plasma during pregnancy: elevated levels of 5 alpha-dihydroprogesterone in depressed patients during the latter half of pregnancy. J Clin Endocrinol Metab 86:5981–5987

    CAS  PubMed  Google Scholar 

  • Peng Z, Hauer B, Mihalek RM, Homanics GE, Sieghart W, Olsen RW, Houser CR (2002) GABA(A) receptor changes in delta subunit-deficient mice: altered expression of alpha 4 and gamma 2 subunits in the forebrain. J Comp Neurol 446:179–197

    CAS  PubMed  Google Scholar 

  • Peng ZC, Huang CS, Stell BM, Mody I, Houser CR (2004) Altered expression of the delta subunit of the GABA(A) receptor in a mouse model of temporal lobe epilepsy. J Neurosci 24:8629–8639

    CAS  PubMed  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2009) SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol 9:24–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    CAS  PubMed  Google Scholar 

  • Purdy RH, Morrow AL, Blinn JR, Paul SM (1990) Synthesis, metabolism, and pharmacological activity of 3-alpha-hydroxy steroids which potentiate Gaba-receptor-mediated chloride-ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 33:1572–1581

    CAS  PubMed  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH, Paul SM (1991) Stress-induced elevations of gamma-aminobutyric-acid type-A receptor-active steroids in the rat-brain. Proc Natl Acad Sci U S A 88:4553–4557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purdy RH, Moore PH, Morrow AL, Paul SM (1992) Neurosteroids and Gaba(A) receptor function. Adv Biochem Psychopharmacol 47:87–92

    CAS  PubMed  Google Scholar 

  • Rapkin AJ, Akopians AL (2012) Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder. Menopause Int 18:52–59

    PubMed  Google Scholar 

  • Rapkin AJ, Morgan M, Goldman L, Brann DW, Simone D, Mahesh VB (1997) Progesterone metabolite allopregnanolone in women with premenstrual syndrome. Obstet Gynecol 90:709–714

    CAS  PubMed  Google Scholar 

  • Reddy DS, Kulkarni SK (1999) Sex and estrous cycle-dependent changes in neurosteroid and benzodiazepine effects on food consumption and plus-maze learning behaviors in rats. Pharmacol Biochem Behav 62:53–60

    CAS  PubMed  Google Scholar 

  • Reddy DS, Rogawski MA (2000) Chronic treatment with the neuroactive steroid ganaxolone in the rat induces anticonvulsant tolerance to diazepam but not to itself. J Pharmacol Exp Ther 295:1241–1248

    CAS  PubMed  Google Scholar 

  • Rinehart J, Vazquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G, Lifton RP (2011) WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem 286:30171–30180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159:747–752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691

    CAS  PubMed  Google Scholar 

  • Sanna E, Mostallino MC, Murru L, Carta M, Talani G, Zucca S, Mura ML, Maciocco E, Biggio G (2009) Changes in expression and function of extrasynaptic GABAA receptors in the rat hippocampus during pregnancy and after delivery. J Neurosci 29:1755–1765

    CAS  PubMed  Google Scholar 

  • Sarkar J, Wakefield S, Mackenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Gong QH, Yuan M, Smith SS (2005) Short-term steroid treatment increases delta GABA(A) receptor subunit expression in rat CA1 hippocampus: pharmacological and behavioral effects. Neuropharmacology 49(5):573–586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M, Williams K, Smith SS (2007) Reversal of neurosteroid effects at alpha4beta2delta GABAA receptors triggers anxiety at puberty. Nat Neurosci 10:469–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Sabaliauskas N, Sherpa A, Fenton AA, Stelzer A, Aoki C, Smith SS (2010) A critical role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in mice. Science 327:1515–1518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith SS (2013) The influence of stress at puberty on mood and learning: role of the alpha(4)betadelta GABAA receptor. Neuroscience 249:192–213

    CAS  PubMed  Google Scholar 

  • Smith SS, Gong QH, Li XS, Moran MH, Bitran D, Frye CA, Hsu FC (1998) Withdrawal from 3 alpha-OH-5 alpha-pregnan-20-one using a pseudopregnancy model alters the kinetics of hippocampal GABA(A)-gated current and increases the GABA(A), receptor alpha 4 subunit in association with increased anxiety. J Neurosci 18:5275–5284

    CAS  PubMed  Google Scholar 

  • Smith SS, Ruderman Y, Frye C, Homanics G, Yuan M (2006) Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder. Psychopharmacology (Berlin) 186:323–333

    CAS  Google Scholar 

  • Smith SS, Shen H, Gong QH, Zhou X (2007) Neurosteroid regulation of GABA(A) receptors: focus on the alpha4 and delta subunits. Pharmacol Ther 116:58–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA(A) conductance in hippocampal interneurons. Nat Commun 2:376

    PubMed Central  PubMed  Google Scholar 

  • Spigelman I, Li ZW, Liang J, Cagetti E, Samzadeh S, Mihalek RM, Homanics GE, Olsen RW (2003) Reduced inhibition and sensitivity to neurosteroids in hippocampus of mice lacking the GABA(A) receptor delta subunit. J Neurophysiol 90:903–910

    CAS  PubMed  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABA(A) receptors. Proc Natl Acad Sci U S A 100:14439–14444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundstrom I, Backstrom T (1998) Patients with premenstrual syndrome have decreased saccadic eye velocity compared to control subjects. Biol Psychiatry 44:755–764

    CAS  PubMed  Google Scholar 

  • Sundstrom I, Ashbrook D, Backstrom T (1997a) Reduced benzodiazepine sensitivity in patients with premenstrual syndrome: a pilot study. Psychoneuroendocrinology 22:25–38

    CAS  PubMed  Google Scholar 

  • Sundstrom I, Nyberg S, Backstrom T (1997b) Patients with premenstrual syndrome have reduced sensitivity to midazolam compared to control subjects. Neuropsychopharmacology 17:370–381

    CAS  PubMed  Google Scholar 

  • Sundstrom I, Andersson A, Nyberg S, Ashbrook D, Purdy RH, Backstrom T (1998) Patients with premenstrual syndrome have a different sensitivity to a neuroactive steroid during the menstrual cycle compared to control subjects. Neuroendocrinology 67:126–138

    CAS  PubMed  Google Scholar 

  • Taherianfard M, Mosavi M (2011) Hippocampal GABA(A) receptor and pain sensitivity during estrous cycle in the rat. Iran J Med Sci 36:289–295

    PubMed Central  PubMed  Google Scholar 

  • Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17:2728–2737

    CAS  PubMed  Google Scholar 

  • Turkmen S, Backstrom T, Wahlstrom G, Andreen L, Johansson IM (2011) Tolerance to allopregnanolone with focus on the GABA-A receptor. Br J Pharmacol 162:311–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980

    CAS  PubMed  Google Scholar 

  • Vicini S, Losi G, Homanics GE (2002) GABA(A) receptor delta subunit deletion prevents neurosteroid modulation of inhibitory synaptic currents in cerebellar neurons. Neuropharmacology 43:646–650

    CAS  PubMed  Google Scholar 

  • Wang M (2011) Neurosteroids and GABA-A receptor function. Front Endocrinol (Lausanne) 2:44

    Google Scholar 

  • Wang M, Seippel L, Purdy RH, Backstrom T (1996) Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J Clin Endocrinol Metab 81:1076–1082

    CAS  PubMed  Google Scholar 

  • Wihlback AC, Sundstrom-Poromaa I, Backstrom T (2006) Action by and sensitivity to neuroactive steroids in menstrual cycle related CNS disorders. Psychopharmacology (Berlin) 186:388–401

    Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13-GABA-A receptor subunit messenger-RNAs in the rat-brain: 1. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    CAS  PubMed  Google Scholar 

  • Wu X, Gangisetty O, Carver CM, Reddy DS (2013) Estrous cycle regulation of extrasynaptic delta-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis. J Pharmacol Exp Ther 346:146–160

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

J.M. and G.M. are supported by NIH grant, R01 NS073574 (J.M.). G.M. was also supported by a postdoctoral fellowship from the Epilepsy Foundation. The authors acknowledge the contributions of Robert H. (Bob) Purdy, to whom this special issue of Psychopharmacology is dedicated, to field of neurosteroids and GABAA receptor function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Maguire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie, G., Maguire, J. The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders. Psychopharmacology 231, 3333–3342 (2014). https://doi.org/10.1007/s00213-013-3423-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3423-z

Keywords

Navigation