Skip to main content
Log in

The role of the cholinergic system in the signal attenuation rat model of obsessive-compulsive disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 19 October 2013

Abstract

Rationale

In comparison to studies of the involvement of the serotonergic, dopaminergic, and glutamatergic systems in the pathophysiology of obsessive–compulsive disorder (OCD), research on the involvement of the cholinergic system in this disorder has remained sparse.

Objectives

The aim of this study was to test the role of the cholinergic system in compulsive behavior using the signal attenuation rat model of OCD. In this model, “compulsive” behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food.

Methods

The acetylcholinesterase inhibitor physostigmine (0.05, 0.10, and 0.15 mg/kg), the nicotinic agonist nicotine (0.03, 0.06, 0.10, 0.30, 0.60, and 1.00 mg/kg), the nicotinic antagonist mecamylamine (1, 3, 5, and 8 mg/kg), the muscarinic agonist oxotremorine (0.0075, 0.0150, and 0.0300 mg/kg), and the muscarinic antagonist scopolamine (0.15, 0.50, 1.00, and 1.50 mg/kg) were acutely administered to rats just before assessing their lever-press responding following signal attenuation (experiments 1, 3, 5, 7, and 9, respectively). Because the effects of signal attenuation are assessed under extinction conditions, drug doses that were effective in the above experiments were also tested in an extinction session of lever-press responding that was not preceded by signal attenuation (experiments 2, 4, 6, 8, and 10).

Results

Acute systemic administration of the cholinergic agents did not exert a selective anti- or pro-compulsive effect in the signal attenuation model.

Conclusions

Acetylcholine does not seem to play a role in the signal attenuation rat model of OCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albelda N, Joel D (2012) Current animal models of obsessive–compulsive disorder: an update. Neuroscience 211:83–106

    Article  PubMed  CAS  Google Scholar 

  • Albelda N, Bar-On N, Joel D (2010) The role of NMDA receptors in the signal attenuation rat model of obsessive–compulsive disorder. Psychopharmacology (Berl) 210:13–24

    Article  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  • Aouizerate B, Guehl D, Cuny E, Rougier A, Burbaud P, Tignol J, Bioulac B (2005) Updated overview of the putative role of the serotoninergic system in obsessive–compulsive disorder. Neuropsychiatr Dis Treat 1:231–243

    PubMed  CAS  Google Scholar 

  • Banks A, Russell RW (1967) Effects of chronic reductions in acetylcholinesterase activity on serial problem-solving behavior. J Comp Physiol Psychol 64:262–267

    Article  PubMed  CAS  Google Scholar 

  • Barak S, Weiner I (2007) Scopolamine induces disruption of latent inhibition which is prevented by antipsychotic drugs and an acetylcholinesterase inhibitor. Neuropsychopharmacology 32:989–999

    Article  PubMed  CAS  Google Scholar 

  • Baxter L (1999) Functional imaging of brain systems mediating obsessive–compulsive disorder. In: Bunney CENW (ed) Neurobiology of mental illness. Oxford University, New York

    Google Scholar 

  • Bejerot S, Humble M (1999) Low prevalence of smoking among patients with obsessive–compulsive disorder. Compr Psychiatry 40:268–272

    Article  PubMed  CAS  Google Scholar 

  • Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33:2007–2019

    Article  PubMed  CAS  Google Scholar 

  • Carlton P (1961) Some effects of scopolamine, atropine, and amphetamine in three behavioral situations. Pharmacologist 3:60

    Google Scholar 

  • Carlton PL (1963) Cholinergic mechanisms in the control of behavior by the brain. Psychol Rev 70:19–39

    Article  PubMed  CAS  Google Scholar 

  • Carnicella S, Pain L, Oberling P (2005) Cholinergic effects on fear conditioning II: nicotinic and muscarinic modulations of atropine-induced disruption of the degraded contingency effect. Psychopharmacology (Berl) 178:533–541

    Article  CAS  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27

    Article  PubMed  CAS  Google Scholar 

  • Denys D, Zohar J, Westenberg HG (2004) The role of dopamine in obsessive–compulsive disorder: preclinical and clinical evidence. J Clin Psychiatry 65(Suppl 14):11–17

    PubMed  CAS  Google Scholar 

  • Dolberg OT, Iancu I, Sasson Y, Zohar J (1996) The pathogenesis and treatment of obsessive–compulsive disorder. Clin Neuropharmacol 19:129–147

    Article  PubMed  CAS  Google Scholar 

  • Driscoll P, Battig K (1970) The effect of nicotine and total alkaloids extracted from cigarette smoke on avoidance behavior in rats under extinction procedure. Psychopharmacologia 18:305–313

    Article  PubMed  CAS  Google Scholar 

  • Flaisher-Grinberg S, Klavir O, Joel D (2008) The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive–compulsive disorder. Int J Neuropsychopharmacol 11:811–825

    Article  PubMed  CAS  Google Scholar 

  • Glazer HI (1972) Physostigmine and resistance to extinction. Psychopharmacologia 26:387–394

    Article  PubMed  CAS  Google Scholar 

  • Gray J (1982) The neuropsychology of anxiety: an enquiry into the functions of the septohippocampal system. Oxford University Press, Oxford

    Google Scholar 

  • Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    Article  PubMed  CAS  Google Scholar 

  • Hearst E (1959) Effects of scopolamine on discriminated responding in the rat. J Pharmacol Exp Ther 126:349–358

    PubMed  CAS  Google Scholar 

  • Joel D (2006) The signal attenuation rat model of obsessive–compulsive disorder: a review. Psychopharmacology (Berl) 186:487–503

    Article  CAS  Google Scholar 

  • Joel D, Avisar A (2001) Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive–compulsive disorder? Behav Brain Res 123:77–87

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J (2003) Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive–compulsive disorder. Neuropsychopharmacology 28:77–85

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Klavir O (2006) The effects of temporary inactivation of the orbital cortex in the signal attenuation rat model of obsessive–compulsive disorder. Behav Neurosci 120:976–983

    Article  PubMed  Google Scholar 

  • Joel D, Ben-Amir E, Doljansky J, Flaisher S (2004) ‘Compulsive’ lever-pressing in rats is attenuated by the serotonin re-uptake inhibitors paroxetine and fluvoxamine but not by the tricyclic antidepressant desipramine or the anxiolytic diazepam. Behav Pharmacol 15:241–252

    PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J, Roz N, Rehavi M (2005a) Role of the orbital cortex and of the serotonergic system in a rat model of obsessive–compulsive disorder. Neuroscience 130:25–36

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J, Schiller D (2005b) ‘Compulsive’ lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Eur J Neurosci 21:2252–2262

    Article  PubMed  Google Scholar 

  • Jones DN, Barnes JC, Kirkby DL, Higgins GA (1995) Age-associated impairments in a test of attention: evidence for involvement of cholinergic systems. J Neurosci 15:7282–7292

    PubMed  CAS  Google Scholar 

  • Lucey JV, Butcher G, Clare AW, Dinan TG (1993) Elevated growth hormone responses to pyridostigmine in obsessive–compulsive disorder: evidence of cholinergic supersensitivity. Am J Psychiatry 150:961–962

    PubMed  CAS  Google Scholar 

  • Lundberg S, Carlsson A, Norfeldt P, Carlsson ML (2004) Nicotine treatment of obsessive–compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:1195–1199

    Article  PubMed  CAS  Google Scholar 

  • Maehara S, Hikichi H, Satow A, Okuda S, Ohta H (2008) Antipsychotic property of a muscarinic receptor agonist in animal models for schizophrenia. Pharmacol Biochem Behav 91:140–149

    Article  PubMed  CAS  Google Scholar 

  • Malloy P (1987) Frontal lobe dysfunction in obsessive–compulsive disorder. In: Perecman E (ed) The frontal lobes revisited. IRBN, New York

    Google Scholar 

  • McCoy D (1972) Some effect of scopolamine on acquisition and extinction performance in rats. PsychoIRep 30:867–873

    Google Scholar 

  • Mendez IA, Gilbert RJ, Bizon JL, Setlow B (2012) Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost-benefit decision making tasks in rats. Psychopharmacology (Berl) 224(4):489–499

    Article  CAS  Google Scholar 

  • Menzies L, Williams GB, Chamberlain SR, Ooi C, Fineberg N, Suckling J, Sahakian BJ, Robbins TW, Bullmore ET (2008) White matter abnormalities in patients with obsessive–compulsive disorder and their first-degree relatives. Am J Psychiatry 165:1308–1315

    Article  PubMed  Google Scholar 

  • Mirza NR, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology (Berl) 138:266–274

    Article  CAS  Google Scholar 

  • Mirza NR, Stolerman IP (2000) The role of nicotinic and muscarinic acetylcholine receptors in attention. Psychopharmacology (Berl) 148:243–250

    Article  CAS  Google Scholar 

  • Mohamed MA, Smith MA, Schlund MW, Nestadt G, Barker PB, Hoehn-Saric R (2007) Proton magnetic resonance spectroscopy in obsessive–compulsive disorder: a pilot investigation comparing treatment responders and non-responders. Psychiatry Res 156:175–179

    Article  PubMed  Google Scholar 

  • Morley BJ, Russin R (1978) The effects of scopolamine on extinction and spontaneous recovery. Psychopharmacology (Berl) 56:301–304

    Article  CAS  Google Scholar 

  • Olds ME (1970) Comparative effects of amphetamine, scopolamine, chlordiazepoxide, and diphenylhydantoin on operant and extinction behavior with brain stimulation and food reward. Neuropharmacology 9:519–532

    Article  PubMed  CAS  Google Scholar 

  • Otto MW (1992) Normal and abnormal information processing. A neuropsychological perspective on obsessive–compulsive disorder. Psychiatr Clin North Am 15:825–848

    PubMed  CAS  Google Scholar 

  • Pasquini M, Garavini A, Biondi M (2005) Nicotine augmentation for refractory obsessive–compulsive disorder. A case report. Prog Neuropsychopharmacol Biol Psychiatry 29:157–159

    Article  PubMed  Google Scholar 

  • Piccinelli M, Pini S, Bellantuono C, Wilkinson G (1995) Efficacy of drug treatment in obsessive–compulsive disorder. A meta-analytic review. Br J Psychiatry 166:424–443

    Article  PubMed  CAS  Google Scholar 

  • Pitman RK (1987) A cybernetic model of obsessive–compulsive psychopathology. Compr Psychiatry 28:334–343

    Article  PubMed  CAS  Google Scholar 

  • Pittenger C, Krystal JH, Coric V (2006) Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive–compulsive disorder. NeuroRx 3:69–81

    Article  PubMed  CAS  Google Scholar 

  • Plotnik R, MoUenauer S, Milberg L (1976) Scopolamine and food reinforced behavior in the rat. Physhiol Psychol 4:443–446

    Google Scholar 

  • Raiff BR, Dallery J (2009) Responding maintained by primary reinforcing visual stimuli is increased by nicotine administration in rats. Behav Process 82:95–99

    Article  Google Scholar 

  • Reed GF (1977) Obsessional personality disorder and remembering. Br J Psychiatry 130:177–183

    Article  PubMed  CAS  Google Scholar 

  • Salin-Pascual RJ, Basanez-Villa E (2003) Changes in compulsion and anxiety symptoms with nicotine transdermal patches in non-smoking obsessive–compulsive disorder patients. Rev Invest Clin 55:650–654

    PubMed  CAS  Google Scholar 

  • Sasson Y, Zohar J, Chopra M, Lustig M, Iancu I, Hendler T (1997) Epidemiology of obsessive–compulsive disorder: a world view. J Clin Psychiatry 58(Suppl 12):7–10

    PubMed  Google Scholar 

  • Smith EA, Russell A, Lorch E, Banerjee SP, Rose M, Ivey J, Bhandari R, Moore GJ, Rosenberg DR (2003) Increased medial thalamic choline found in pediatric patients with obsessive–compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biol Psychiatry 54:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Woody E (2004) Obsessive–compulsive disorder as a disturbance of security motivation. Psychol Rev 111:111–127

    Article  PubMed  Google Scholar 

  • Tian S, Gao J, Han L, Fu J, Li C, Li Z (2008) Prior chronic nicotine impairs cued fear extinction but enhances contextual fear conditioning in rats. Neuroscience 153:935–943

    Article  PubMed  CAS  Google Scholar 

  • Tizabi Y, Louis VA, Taylor CT, Waxman D, Culver KE, Szechtman H (2002) Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive–compulsive disorder. Biol Psychiatry 51:164–171

    Article  PubMed  CAS  Google Scholar 

  • Wongwitdecha N, Marsden CA (1996) Effects of social isolation rearing on learning in the Morris water maze. Brain Res 715:119–124

    Article  PubMed  CAS  Google Scholar 

  • Zohar AH, Ratzoni G, Pauls DL, Apter A, Bleich A, Kron S, Rappaport M, Weizman A, Cohen DJ (1992) An epidemiological study of obsessive–compulsive disorder and related disorders in Israeli adolescents. J Am Acad Child Adolesc Psychiatry 31:1057–1061

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Daphna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roni, YY., Daphna, J. The role of the cholinergic system in the signal attenuation rat model of obsessive-compulsive disorder. Psychopharmacology 230, 37–48 (2013). https://doi.org/10.1007/s00213-013-3134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3134-5

Keywords

Navigation