Skip to main content
Log in

Norepinephrine and impulsivity: effects of acute yohimbine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Rapid-response impulsivity, characterized by inability to withhold response to a stimulus until it is adequately appraised, is associated with risky behavior and may be increased in a state-dependent manner by norepinephrine.

Objective

We assessed effects of yohimbine, which increases norepinephrine release by blocking alpha-2 noradrenergic receptors, on plasma catecholamine metabolites, blood pressure, subjective symptoms, and laboratory-measured rapid-response impulsivity.

Methods

Subjects were 23 healthy controls recruited from the community, with normal physical examination and ECG, and negative history for hypertension, cardiovascular illness, and axis I or II disorder. Blood pressure, pulse, and behavioral measures were obtained before and periodically after 0.4 mg/kg oral yohimbine or placebo in a randomized, counterbalanced design. Metabolites of norepinephrine [3-methoxy-4-hydroxyphenylglycol (MHPG) and vanillylmandelic acid (VMA)] and dopamine [homovanillic acid (HVA)] were measured by high-pressure liquid chromatography with electrochemical detection. Rapid-response impulsivity was measured by commission errors and reaction times on the immediate memory task (IMT), a continuous performance test designed to measure impulsivity and attention.

Results

Yohimbine increased plasma MHPG and VMA but not HVA. Yohimbine increased systolic and diastolic blood pressure and pulse rate. On the IMT, yohimbine increased impulsive errors and impulsive response bias and accelerated reaction times. Yohimbine-associated increase in plasma MHPG correlated with increased impulsive response rates. Time courses varied; effects on blood pressure generally preceded those on metabolites and test performance.

Conclusions

These effects are consistent with increased rapid-response impulsivity after pharmacological noradrenergic stimulation in healthy controls. Labile noradrenergic responses, or increased sensitivity to norepinephrine, may increase risk for impulsive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Aghajanian GK (1978) Feedback regulation of central monoaminergic neurons: evidence from single cell recording studies. Essays Neurochem Neuropharmacol 3:1–32

    PubMed  CAS  Google Scholar 

  • Albus M, Zahn TP, Breier A (1992) Anxiogenic properties of yohimbine. II. Influence of experimental set and setting. Eur Arch Psychiatry Clin Neurosci 241:345–351

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF (2000) Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. Prog Brain Res 126:183–192

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1:2

    Article  PubMed  Google Scholar 

  • Arnsten AF, Li BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57:1377–1384

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Pliszka SR (2011) Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol Biochem Behav 99:211–216

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM (1999) Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 45:26–31

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110

    Article  PubMed  CAS  Google Scholar 

  • Avery RA, Franowicz JS, Studholme C, van Dyck CH, Arnsten AF (2000) The alpha-2A-adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology 23:240–249

    Article  PubMed  CAS  Google Scholar 

  • Baker NJ, Adler LE, Waldo M, Gerhardt G, Drebing C, Cox B, Berry S, Phillips W, Freedman R (1988) Reproducibility of the measurement of plasma noradrenergic and dopaminergic metabolites in normal subjects. Psychiatry Res 23:119–130

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Aston-Jones G (2013) Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons. Neuropharmacology 64:53–64

    Article  PubMed  CAS  Google Scholar 

  • Barratt ES (1985) Impulsiveness subtraits: arousal and information processing. In: Spence JT, Izard CE (eds) Motivation, emotion, and personality. Elsevier Science, Amsterdam, pp 137–146

    Google Scholar 

  • Bauer MS, Crits Christoph P, Ball WA, Dewees E, McAllister T, Alahi P, Cacciola J, Whybrow PC (1991) Independent assessment of manic and depressive symptoms by self-rating. Scale characteristics and implications for the study of mania. Arch Gen Psychiatry 48:807–812

    Article  PubMed  CAS  Google Scholar 

  • Baumann MH, Milchanowski AB, Rothman RB (2004) Evidence for alterations in alpha2-adrenergic receptor sensitivity in rats exposed to repeated cocaine administration. Neuroscience 125:683–690

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  • Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF (1999) A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry 46:1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum SG, Podell DM, Arnsten AF (2000) Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats. Pharmacol Biochem Behav 67:397–403

    Article  PubMed  CAS  Google Scholar 

  • Bjork JM, Hommer DW, Grant SJ, Danube C (2004) Impulsivity in abstinent alcohol-dependent patients: relation to control subjects and type 1-/type 2-like traits. Alcohol 34:133–150

    Article  PubMed  Google Scholar 

  • Carli M, Samanin R (2000) The 5-HT(1A) receptor agonist 8-OH-DPAT reduces rats' accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT(1A) receptors. Psychopharmacology (Berl) 149:259–268

    Article  CAS  Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE (1982) Assessment of alpha 2 adrenergic autoreceptor function in humans: effects of oral yohimbine. Life Sci 30:2033–2041

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Robbins TW (1989) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res 33:165–179

    Article  PubMed  CAS  Google Scholar 

  • de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJ (1995) Alpha 2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 20:427–433

    Article  PubMed  Google Scholar 

  • Dougherty DM, Bjork JM, Harper RA, Marsh DM, Moeller FG, Mathias CW, Swann AC (2003a) Behavioral impulsivity paradigms: a comparison in hospitalized adolescents with disruptive behavior disorders. J Child Psychol Psychiatry 44:1145–1157

    Article  PubMed  Google Scholar 

  • Dougherty DM, Bjork JM, Moeller FG, Harper RA, Marsh DM, Mathias CW, Swann AC (2003b) Familial transmission of continuous performance test behavior: attentional and impulsive response characteristics. J Gen Psychol 130:5–21

    Article  PubMed  Google Scholar 

  • Dougherty DM, Mathias CW, Marsh DM, Papageorgiou TD, Swann AC, Moeller FG (2004) Laboratory-measured behavioral impulsivity relates to suicide attempt history. Suicide and Life-Threatening Behavior 34:374–385

    Article  PubMed  Google Scholar 

  • Doyle AE, Wozniak J, Wilens TE, Henin A, Seidman LJ, Petty C, Fried R, Gross LM, Faraone SV, Biederman J (2009) Neurocognitive impairment in unaffected siblings of youth with bipolar disorder. Psychol Med 39:1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Dzung LA, Funk D, Harding S, Juzytsch W, Fletcher PJ (2009) The role of noradrenaline and 5-hydroxytryptamine in yohimbine-induced increases in alcohol-seeking in rats. Psychopharmacology (Berl) 204:477–488

    Article  Google Scholar 

  • Economidou D, Theobald DE, Robbins TW, Everitt BJ, Dalley JW (2012) Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology. doi:10.1038/npp.2012.53

    Google Scholar 

  • Evenden J (2000) Varieties of impulsivity. Psychopharmacol 146:348–361

    Google Scholar 

  • Fernando AB, Economidou D, Theobald DE, Zou MF, Newman AH, Spoelder M, Caprioli D, Moreno M, Hipolito L, Aspinall AT, Robbins TW, Dalley JW (2012) Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists. Psychopharmacology (Berl) 219:341–352

    Article  CAS  Google Scholar 

  • Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35:591–604

    Article  PubMed  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JB (1996) Structured clinical interview for DSM-IV Axis I disorders Patient Edition. Biometrics Research Institute, New York State Psychiatric Institute, New York

    Google Scholar 

  • Fitzgerald PJ (2011) A neurochemical yin and yang: does serotonin activate and norepinephrine deactivate the prefrontal cortex? Psychopharmacology (Berl) 213:171–182

    Article  CAS  Google Scholar 

  • Fukuda M, Hata A, Niwa S, Hiramatsu K, Honda H, Nakagome K, Iwanami A (1996) Plasma vanillylmandelic acid level as an index of psychological stress response in normal subjects. Psychiatry Res 63:7–16

    Article  PubMed  CAS  Google Scholar 

  • Goddard AW, Charney DS, Germine M, Woods SW, Heninger GR, Krystal JH, Goodman WK, Price LH (1995) Effects of tryptophan depletion on responses to yohimbine in healthy human subjects. Biol Psychiatry 38:74–85

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Gurguis GN, Uhde TW (1990) Plasma 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and growth hormone responses to yohimbine in panic disorder patients and normal controls. Psychoneuroendocrinology 15:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kalsner S, Abdali SA (2001) Rate-independent inhibition by norepinephrine of 5-HT release from the somadendritic region of serotonergic neurons. Brain Res Bull 55:761–765

    Article  PubMed  CAS  Google Scholar 

  • Lane SD, Cherek DR, Rhoades HM, Pietras CJ, Tcheremissine OV (2003) Relationships among laboratory and psychometric measures of impulsivity: implications in substance abuse and dependence. Addictive Disorders and Their Treat 2:33–40

    Article  Google Scholar 

  • Li GY, Ueki H, Kawashima T, Sugataka K, Muraoka T, Yamada S (2004) Involvement of the noradrenergic system in performance on a continuous task requiring effortful attention. Neuropsychobiology 50:336–340

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Lin YL, Chuang CH, Kao YC, Chang ST, Tung CS (2009) Alpha adrenergic modulation on effects of norepinephrine transporter inhibitor reboxetine in five-choice serial reaction time task. J Biomed Sci 16:72

    Article  PubMed  Google Scholar 

  • Ma CL, Arnsten AF, Li BM (2005) Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol Psychiatry 57:192–195

    Article  PubMed  CAS  Google Scholar 

  • Maas JW, Landis DH (1968) In vivo studies of the metabolism of norepinephrine in the central nervous system. J Pharmacol Exp Ther 163:147–162

    PubMed  CAS  Google Scholar 

  • Maas JW, Hattox SE, Greene NM, Landis DH (1979) 3-Methoxy-4-hydroxyphenethyleneglycol production by human brain in vivo. Science 205:1025–1027

    Article  PubMed  CAS  Google Scholar 

  • Malloy-Diniz LF, Neves FS, de Moraes PH, De Marco LA, Romano-Silva MA, Krebs MO, Correa H (2011) The 5-HTTLPR polymorphism, impulsivity and suicide behavior in euthymic bipolar patients. J Affect Disord 133:221–226

    Article  PubMed  CAS  Google Scholar 

  • Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H (2010) Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for beta-2 adrenergic receptors. Neuropsychopharmacology 35:2165–2178

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Coge F, Galizzi JP, Boutin JA, Rivet JM, Dekeyne A, Gobert A (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 35:79–95

    Article  PubMed  CAS  Google Scholar 

  • Mizuki Y, Suetsugi M, Ushijima I, Yamada M (1996) Differential effects of noradrenergic drugs on anxiety and arousal in healthy volunteers with high and low anxiety. Prog Neuropsychopharmacol Biol Psychiatry 20:1353–1367

    Article  PubMed  CAS  Google Scholar 

  • Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Otte C, Neylan TC, Pole N, Metzler T, Best S, Henn-Haase C, Yehuda R, Marmar CR (2005) Association between childhood trauma and catecholamine response to psychological stress in police academy recruits. Biol Psychiatry 57:27–32

    Article  PubMed  CAS  Google Scholar 

  • Owen JC, Whitton PS (2003) Reboxetine modulates norepinephrine efflux in the frontal cortex of the freely moving rat: the involvement of alpha 2 and 5-HT1A receptors. Neurosci Lett 348:171–174

    Article  PubMed  CAS  Google Scholar 

  • Paterson NE, Wetzler C, Hackett A, Hanania T (2012) Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat. Int J Neuropsychopharmacol 15:1473–1487

    Article  PubMed  CAS  Google Scholar 

  • Peskind ER, Veith RC, Dorsa DM, Gumbrecht G, Raskind MA (1989) Yohimbine increases cerebrospinal fluid and plasma norepinephrine but not arginine vasopressin in humans. Neuroendocrinology 50:286–291

    Article  PubMed  CAS  Google Scholar 

  • Powell SB, Palomo J, Carasso BS, Bakshi VP, Geyer MA (2005) Yohimbine disrupts prepulse inhibition in rats via action at 5-HT1A receptors, not alpha2-adrenoceptors. Psychopharmacology (Berl) 180:491–500

    Article  CAS  Google Scholar 

  • Price LH, Charney DS, Heninger GR (1984) Three cases of manic symptoms following yohimbine administration. Am J Psychiatry 141:1267–1268

    PubMed  CAS  Google Scholar 

  • Reynolds B, Penfold RB, Patak M (2008) Dimensions of impulsive behavior in adolescents: laboratory behavioral assessments. Exp Clin Psychopharmacol 16:124–131

    Article  PubMed  Google Scholar 

  • Riba J, Rodriguez-Fornells A, Morte A, Munte TF, Barbanoj MJ (2005) Noradrenergic stimulation enhances human action monitoring. J Neurosci 25:4370–4374

    Article  PubMed  CAS  Google Scholar 

  • Roychowdhury S, Pena-Contreras Z, Tam J, Yadlapalli A, Dinh L, Nichols JA, Basu D, Atzori M (2012) alpha(2)- and beta-adrenoceptors involvement in nortriptyline modulation of auditory sustained attention and impulsivity. Psychopharmacology (Berl) 222:237–245

    Article  CAS  Google Scholar 

  • Scheinin M, Chang W, Jimerson DC, Linnoila M (1983) Measurement of 3-methoxy-4-hydroxyphenylglycol in human plasma with high performance liquid chromatography using electrochemical detection. Anal Biochem 132:165–170

    Article  PubMed  CAS  Google Scholar 

  • Schepis TS, McFetridge A, Chaplin TM, Sinha R, Krishnan-Sarin S (2011) A pilot examination of stress-related changes in impulsivity and risk taking as related to smoking status and cessation outcome in adolescents. Nicotine Tob Res 13:611–615

    Article  PubMed  Google Scholar 

  • Soltis RP, Cook JC, Gregg AE, Sanders BJ (1997) Interaction of GABA and excitatory amino acids in the basolateral amygdala: role in cardiovascular regulation. J Neurosci 17:9367–9374

    PubMed  CAS  Google Scholar 

  • Spitzer RL, Endicott J (1978) Schedule for affective disorders and schizophrenia: change version. Biometrics Research, New York State Psychiatric Institute, New York

    Google Scholar 

  • Stanford MS, Mathias CW, Dougherty DM, Lake SL, Anderson NE, Patton JH (2009) Fifty years of the Barratt Impulsiveness Scale: an update and review. Personal Individ Differ 47:385–395

    Article  Google Scholar 

  • Sun H, Green TA, Theobald DE, Birnbaum SG, Graham DL, Zeeb FD, Nestler EJ, Winstanley CA (2010) Yohimbine increases impulsivity through activation of cAMP response element binding in the orbitofrontal cortex. Biol Psychiatry 67:649–656

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Cocker PJ, Zeeb FD, Winstanley CA (2012) Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology (Berl) 219:285–301

    Article  CAS  Google Scholar 

  • Swann AC, Maas JW, Hattox SE, Landis DH (1980) Catecholamine metabolites in human plasma as indices of brain function: effects of debrisoquin. Life Sci 27:1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Koslow SH, Katz MM, Maas JW, Javaid J, Secunda SK, Robins E (1987) Lithium carbonate treatment of mania. Cerebrospinal fluid and urinary monoamine metabolites and treatment outcome. Arch Gen Psychiatry 44:345–354

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Bjork JM, Moeller FG, Dougherty DM (2002) Two models of impulsivity: relationship to personality traits and psychopathology. Biol Psychiatry 51:988–994

    Article  PubMed  Google Scholar 

  • Swann AC, Pazzaglia P, Nicholls A, Dougherty DM, Moeller FG (2003) Impulsivity and phase of illness in bipolar disorder. J Affect Disord 73:105–111

    Article  PubMed  Google Scholar 

  • Swann AC, Birnbaum D, Jagar AA, Dougherty DM, Moeller FG (2005a) Acute yohimbine increases laboratory-measured impulsivity in normal subjects. Biol Psychiatry 57:1209–1211

    Article  PubMed  CAS  Google Scholar 

  • Swann AC, Dougherty DM, Pazzaglia PJ, Pham M, Steinberg JL, Moeller FG (2005b) Increased impulsivity associated with severity of suicide attempt history in patients with bipolar disorder. Am J Psychiatry 162:1680–1687

    Article  PubMed  Google Scholar 

  • Swann AC, Lijffijt M, Lane SD, Steinberg JL, Moeller FG (2009) Trait impulsivity and response inhibition in antisocial personality disorder. J Psychiatr Res 43:1057–1063

    Article  PubMed  Google Scholar 

  • Swann AC, Lijffijt M, Lane SD, Kjome KL, Steinberg JL, Moeller FG (2011) Criminal conviction, impulsivity, and course of illness in bipolar disorder. Bipolar Disord 13:173–181

    Article  PubMed  Google Scholar 

  • Szabo B, Urban R (1995) Mechanism of sympathoinhibition by imidazolines. Ann N Y Acad Sci 763:552–565

    Article  PubMed  CAS  Google Scholar 

  • Szemeredi K, Komoly S, Kopin IJ, Bagdy G, Keiser HR, Goldstein DS (1991) Simultaneous measurement of plasma and brain extracellular fluid concentrations of catechols after yohimbine administration in rats. Brain Res 542:8–14

    Article  PubMed  CAS  Google Scholar 

  • Tibirica E, Feldman J, Mermet C, Gonon F, Bousquet P (1991) An imidazoline-specific mechanism for the hypotensive effect of clonidine: a study with yohimbine and idazoxan. J Pharmacol Exp Ther 256:606–613

    PubMed  CAS  Google Scholar 

  • Torregrossa MM, Xie M, Taylor JR (2012) Chronic corticosterone exposure during adolescence reduces impulsive action but increases impulsive choice and sensitivity to yohimbine in male Sprague–Dawley rats. Neuropsychopharmacology 37:1656–1670

    Article  PubMed  CAS  Google Scholar 

  • van Kammen DP, Murphy DL (1975) Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia 44:215–224

    Article  PubMed  Google Scholar 

  • Vythilingam M, Anderson GM, Owens MJ, Halaszynski TM, Bremner JD, Carpenter LL, Heninger GR, Nemeroff CB, Charney DS (2000) Cerebrospinal fluid corticotropin-releasing hormone in healthy humans: effects of yohimbine and naloxone. J Clin Endocrinol Metab 85:4138–4145

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA (2011) The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders. Br J Pharmacol 164:1301–1321. doi:10.1111/j.1476-5381.2011.01323.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Pat R Rutherford, Jr. Chair in Psychiatry (ACS) and by NIH grants R01-MH69944 (ACS), K02-DA00403 (FGM), and UL1-RR024148 (CTSA; General Clinical Research Center UT Houston). We thank Martin Javors, Ph.D. (University of Texas Health Science Center at San Antonio) for performing catecholamine metabolite assays; Stephen Hecht, M.D., Department of Emergency Medicine, for assisting with medical backup; and Stacy Meier, Leslie Paith, Irshad Prasla, Tammy Souter, R.N., Anthony Zamudio, R.N., and the nursing staff of the Clinical Research Unit, for their skilled assistance.

Conflicts of interest

Dr. Swann has served on Data Safety Monitoring Boards for Pfizer Laboratories and Teva Pharmaceuticals; as a speaker for Abbott Laboratories, Cortexcongress, Merck, and Sanofi-Aventis; as a consultant for Merck; and has received grant support from Elan Pharmaceuticals and the NIH. Dr. Moeller has acted as a consultant for Boeringer Ingelheim and has received funding from the NIH. Drs. Lane and Steinberg have received funding from the NIH. Dr. Lijffijt and Mr. Cox report no potential conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Swann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swann, A.C., Lijffijt, M., Lane, S.D. et al. Norepinephrine and impulsivity: effects of acute yohimbine. Psychopharmacology 229, 83–94 (2013). https://doi.org/10.1007/s00213-013-3088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3088-7

Keywords

Navigation