Skip to main content
Log in

The hidden side of drug action: brain temperature changes induced by neuroactive drugs

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions.

Objectives

Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs.

Results

By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35–39 °C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40 °C) associated with leakage of the blood–brain barrier and structural abnormalities of brain cells.

Conclusions

The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APO:

Apomorphine

DA:

Dopamine

GFAP:

Glial fibrillary acidic protein

iv:

Intravenous

ip:

Intraperitoneal

METH:

Methamphetamine

MDMA:

3,4-methylenedioxymethamphetamine

NAcc:

Nucleus accumbens

sc:

Subcutaneous

VTA:

Ventral tegmental area

References

  • Alberts DS, Sonsalla PK (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther 275:1104–1114

    Google Scholar 

  • Ali SF, Newport GD, Holson RR, Slikker W, Bowyer JF (1994) Low environmental temperatures or pharmacological agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res 658:33–38

    Article  PubMed  CAS  Google Scholar 

  • Armenian P, Mamantov TM, Tsutaoka BT, Gerona RR, Silman EF, Wu AH, Olson KR (2012) Multiple MDMA (Ecstasy) overdoses at a rave event: a case series. J Intensive Care Med. doi:10.1177/0885066612445982

  • Baker MA, Frye FM, Millet VE (1973) Origin of temperature changes evoked in the brain by sensory stimulation. Exp Neurol 38:502–519

    Article  PubMed  CAS  Google Scholar 

  • Banks ML, Sprague JE, Kisor DF, Czoty PW, Nichols DE, Nader MA (2007) Ambient temperature effects on 3, 4-Methylenedioxythamphetamine-induced thermodysregulation and pharmacokinetics in male monkey. Drug Metab Dispos 35:1840–1845

    Article  PubMed  CAS  Google Scholar 

  • Brown PL, Kiyatkin EA (2004) Brain hyperthermia induced by MDMA (“ecstasy”): modulation by environmental conditions. Eur J Neurosci 20:51–58

    Article  PubMed  CAS  Google Scholar 

  • Brown PL, Wise RA, Kiyatkin EA (2003) Brain hyperthermia is induced by methamphetamine and exacerbated by social interaction. J Neurosci 23:3924–3929

    PubMed  CAS  Google Scholar 

  • Brown PL, Bae D, Kiyatkin EA (2007) Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission. Neuroscience 145:335–343

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Bernardi G (2000) Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23:S57–S63

    Article  PubMed  CAS  Google Scholar 

  • Calne DB, Claveria LE, Reid JL (1975) Hypothermic action of bromocriptine. Br J Pharmacol 54:123–124

    PubMed  CAS  Google Scholar 

  • Cervos-Navarro J, Sharma HS, Westman J, Bongcum-Rudloff E (1998) Glial cell reactions in the central nervous system following heat stress. Progr Brain Res 115:241–274

    Article  CAS  Google Scholar 

  • Chen YZ, Xu RX, Huang QJ, Xu ZJ, Jiang XD, Cai YO (2003) Effect of hyperthermia on tight junctions between endothelial cells of the blood–brain barrier model in vitro. Di Yi Jun Da Xue Xue Bao 23:21–24

    Google Scholar 

  • Cole JC, Sumnall HR (2003) The pre-clinical behavioral pharmacology of 3, 4-methylenedioxymethamphetamine (MDMA). Neurosci Biobehav Rev 27:199–217

    Article  PubMed  CAS  Google Scholar 

  • Cox B, Lee TF (1980) Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat. J Physiol 300:7–17

    PubMed  CAS  Google Scholar 

  • Crane PD, Braun LD, Cornford EM, Cremer JE, Glass JM, Oldendorf WH (1978) Dose dependent reduction of glucose utilization by pentobarbital in rat brain. Stroke 9:12–18

    Article  PubMed  CAS  Google Scholar 

  • Dafters RI (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Beh 58:877–882

    Article  CAS  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36:1–22

    Article  PubMed  CAS  Google Scholar 

  • Davis WM, Hatoum HT, Walters IW (1987) Toxicity of MDA (2.4-methylenedioxyamphetamine) considered for relevance to hazards of MDMA (Ecstasy) abuse. Alcohol Drug Res 7:123–134

    PubMed  CAS  Google Scholar 

  • De Vito MJ, Wagner GC (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28:1145–1150

    Article  PubMed  Google Scholar 

  • Delgado JMR, Hanai T (1966) Intracerebral temperatures in free-moving cats. Am J Physiol 211:755–769

    PubMed  CAS  Google Scholar 

  • Esposito P, Cheorghe D, Kendere K, Pang X, Connoly R, Jaconson S, Theodorides TC (2001) Acute stress increases permeability of the blood–brain barrier through activation of brain must cells. Brain Res 888:117–127

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (2003) Neurons, glia, and plasticity in normal brain aging. Neurobiol Aging 24(Suppl 1):S123–S127

    Article  PubMed  CAS  Google Scholar 

  • Freedman RR, Johanson C-E, Tancer ME (2005) Thermoregulatory effects of 3,4-metylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 183:248–256

    Article  PubMed  CAS  Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminegic neurons in freely moving rats. Life Sci 20:1983–1994

    Article  Google Scholar 

  • Fuller CA, Baker MA (1983) Selective regulation of brain and body temperatures in the squirrel monkey. Am J Physiol 245:R293–R297

    PubMed  CAS  Google Scholar 

  • Fuxe K, Sjoqvist F (1972) Hypothermic effect of apomorphine in the mouse. J Pharm Pharmacol 24:702–705

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ (2007) Thermophysiological responses to hyperthermic drugs: extrapolating from rodent to human. Prog Brain Res 162:63–79

    Article  PubMed  CAS  Google Scholar 

  • Gordon CJ, Watkinson WP, O’Callaghan PP, Miller DB (1991) Effects of 3,4-Metylenedioxymetamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol Biochem Behav 38:339–344

    Article  PubMed  CAS  Google Scholar 

  • Gordth T, Chu H, Sharma HS (2006) Spinal nerve lesion alters blood-spinal cord barrier functions and activates astrocytes in the rat. Pain 124:211–221

    Article  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378

    Article  PubMed  CAS  Google Scholar 

  • Hayward JN, Baker MA (1968) Role of cerebral blood flow in the regulation of brain temperature in the monkey. Am J Physiol 215:389–403

    PubMed  CAS  Google Scholar 

  • Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J Neurosci 19:10417–10427

    PubMed  CAS  Google Scholar 

  • Imperato A, Di Chiara G (1985) Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis. J Neurosci 5:297–306

    PubMed  CAS  Google Scholar 

  • Iwagami Y (1996) Changes in the ultrastructure of human cell related to certain biological responses under hyperthermic culture conditions. Hum Cell 9:353–366

    PubMed  CAS  Google Scholar 

  • Jackson DM, Westlind-Dinielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioral aspects. Pharmac Ther 65:291–369

    Article  Google Scholar 

  • Kalant H (2001) The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Ass J 165:917–928

    CAS  Google Scholar 

  • Kiyatkin EA (2002) Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism’s adaptive activity. Behav Brain Res 137:27–46

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA (2005) Brain hyperthermia as physiological and pathological phenomena. Brain Res Rev 50:27–56

    Article  PubMed  Google Scholar 

  • Kiyatkin EA (2008) Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses. Pharmacol Biochem Behav 91:233–242

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA (2010) Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front Biosci 15:73–92

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL (2003) Fluctuations in neural activity during cocaine self-administration: clues provided by brain thermorecording. Neuroscience 116:525–538

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL (2004) Brain temperature fluctuations during repeated passive vs. active cocaine administration: clues for understanding the pharmacological determination of drug-taking behavior. Brain Res 1005:101–116

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL (2005) Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats. Physiol Behav 84:563–570

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Mitchum R (2003) Fluctuations in brain temperatures during sexual behavior in male rats: an approach for evaluating neural activity underlying motivated behavior. Neuroscience 119:1169–1183

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Rebec GV (1999) Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 dopamine receptors in freely moving rats. J Neurosci 19:3594–3609

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Wise RA (2002) Brain and body hyperthermia associated with heroin self-administration in rats. J Neurosci 22:1072–1080

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL, Sharma HS (2007) Brain edema and breakdown of blood–brain barrier during methamphetamine intoxication: critical role of brain temperature. Eur J Neurosci 26:1242–1253

    Article  PubMed  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JM (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DM, Geddes TJ (2000) Molecular footprints of neurotoxic amphetamine action. Ann NY Acad Sci 914:92–103

    Article  PubMed  CAS  Google Scholar 

  • Lapin IP, Samsonova ML (1968) Apomorphine-induced hypothermia in mice and the effect thereon of adrenergic and serotoninergic agents. Farmacol Toxicol 31:563–569 (in Russian)

    CAS  Google Scholar 

  • Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network–functional and regulatory roles. Physiol Rev 71:155–234

    PubMed  Google Scholar 

  • Lenhardt R (2010) The effect of anesthesia on body temperature control. Front Biosci 15:1145–1154

    Article  Google Scholar 

  • Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia 19:252–266

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Chen YF, Wang Z, Wang HS (1979) Effects of apomorphine on thermoregulatory responses of rats to different ambient temperatures. Can J Physiol Pharmacol 57:469–475

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Chandra A, Tsay BL, Chern YF (1982) Hypothalamic and striatal dopamine receptor activation inhibits heat production in the rat. Am J Physiol 242:R471–R481

    PubMed  CAS  Google Scholar 

  • Lin MT, Ho MT, Young MS (1992) Stimulation of the nigrostriatal dopamine system inhibits both heat production and heat loss mechanisms in rats. Naunyn Schmiedberg’s Arch Pharmacol 346:504–510

    CAS  Google Scholar 

  • Ma J, Ye N, Lange N, Cohen BM (2003) Dynorphinergic GABA neurons are a target of both typical and atypical antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus and thalamic central medial nucleus. Neuroscience 121:991–998

    Article  PubMed  CAS  Google Scholar 

  • Mariak Z, Jadeszko M, Lewko J, Lebkowski W, Lyson T (1998) No specific brain protection against thermal stress in fever. Acta Neurochir (Wien) 140:585–590

    Article  CAS  Google Scholar 

  • Mariak Z, Lebkowski W, Lyson T, Lewko J, Piekarski P (1999) Brain temperature during craniotomy in general anesthesia. Neurol Neurochir Pol 33:1325–1327

    PubMed  CAS  Google Scholar 

  • Mariak Z, Lyson T, Peikarski P, Lewko J, Jadeszko M, Szydlik P (2000) Brain temperature in patients with central nervous system lesions. Neurol Neurosurg Pol 34:509–522

    CAS  Google Scholar 

  • Mechan AO, Esteban B, O’Shea E, Elliott JM, Colado MI, Green AR (2002) The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenediomethamphetamine (MDMA, “ecstasy”) to rats. Br J Pharmacol 135:170–180

    Article  PubMed  CAS  Google Scholar 

  • Mellergard P, Nordstrom CH (1990) Epidural temperatures and possible intracerebral temperature gradients in man. Br J Neurosurg 4:31–38

    Article  PubMed  CAS  Google Scholar 

  • Miller DB, O’Callaghan JP (2003) Elevated environmental temperature and methamphetamine neurotoxicity. Environ Res 92:48–53

    Article  PubMed  CAS  Google Scholar 

  • Nimmo SM, Kennedy BW, Tullett WM, AS B, Dougall JR (1993) Drug-induced hyperthermia. Anesthesia 48:892–895

    Article  CAS  Google Scholar 

  • Nybo L (2008) Hyperthermia and fatigue. J Appl Physiol 104:871–877

    Article  PubMed  Google Scholar 

  • Nybo L, Secher NH, Nielson B (2002) Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J Physiol 545:697–704

    Article  PubMed  CAS  Google Scholar 

  • Oifa AI, Kleshchnov VN (1985) Ultrastructural analysis of the phenomenon of acute neuronal swelling. Zh Nevropatol Psikhiatr Im SS Korsakova 85:1016–1020 (in Russian)

    CAS  Google Scholar 

  • Ovadia H, Abramsky O, Feldman S, Weidenfeld J (2001) Evaluation of the effects of stress on the blood–brain barrier: critical role of the brain perfusion time. Brain Res 905:21–25

    Article  PubMed  CAS  Google Scholar 

  • Pederson NP, Blessing WW (2001) Cutaneous vasoconstriction contributes to hyperthermia induced by 3,4-methylenedioxymethamphetamine (ecstasy) on conscious rabbits. J Neurosci 21:8648–8654

    Google Scholar 

  • Pickens R, Thompson T (1968) Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed–ratio size. J Pharmacol Exp Ther 16:122–129

    Google Scholar 

  • Pierce EC, Lambertsen CJ, Deautch S, Chase PE, Linde HW, Dripps RD, Price HL (1962) Cerebral circulation and metabolism during thiopental anesthesia and hyper-ventilation in man. J Clin Invest 41:1664–1671

    Article  PubMed  CAS  Google Scholar 

  • Rango M, Arighi A, Bonifati C, Bresolin N (2012) Increased brain temperature in Parkinson’s disease. Neuroreport 23:129–133

    Article  PubMed  Google Scholar 

  • Rapoport SI (1976) Blood–brain barrier in physiology and medicine. Raven Press, New York

    Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163

    Article  PubMed  CAS  Google Scholar 

  • Riddle EL, Fleckenstein AE, Hanson GR (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. The AAPS Journal 8(2) Article 48 (http://www.aapsj.orghttp://www.aapsj.org)

  • Romanovsky AA, Ivanov AI, Shimansky YP (2002) Ambient temperature for expetiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–2679

    PubMed  Google Scholar 

  • Rowell LB (1983) Cardiovascular aspects of human thermoregulation. Circ Res 52:367–376

    Article  PubMed  CAS  Google Scholar 

  • Rumana CS, Gopinath SP, Uzura M, Valadka AB, Robertson CS (1998) Brain temperatures exceed systemic temperatures in head-injured patients. Clin Care Med 26:562–567

    Article  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Cur Opin Pharmacol 5:34–41

    Article  CAS  Google Scholar 

  • Sandoval V, Hanson GR, Fleckenstein AE (2000) Methamphetamine decreases mouse striatal dopamine transport activity: roles of hyperthermia and dopamine. Eur J Pharmacol 409:265–271

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Adaptation and environment, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmued LC (2003) Demonstration and localization of neuronal degeneration in the rat forebrain following a single exposure to MDMA. Brain Res 974:127–133

    Article  PubMed  CAS  Google Scholar 

  • Schwab S, Spranger M, Aschoff A, Steiner T, Hacke W (1997) Brain temperature monitoring and modulation in patients with severe MCA infarction. Neurology 48:62–67

    Google Scholar 

  • Seiden LS, Sabol KE (1996) Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction. NIDA Res Monogr 163:251276

    Google Scholar 

  • Sessler DI (2008) Temperature monitoring and perioperative thermoregulation. Anesthesiology 109:318–338

    Article  PubMed  Google Scholar 

  • Sharma HS, Ali SF (2006) Alterations in blood–brain barrier function by morphine and amphetamine. Ann NY Acad Sci 1074:198–224

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Dey PK (1986) Influence of long-term immobilization stress on regional blood–brain permeability, cerebral blood flow and 5-HT levels in conscious normotensive young rats. J Neurol Sci 72:61–76

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Hoopes PJ (2003) Hyperthermia-induced pathophysiology of the central nervous system. Int J Hyperthermia 19:325–354

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Kiyatkin EA (2009) Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 37:18–32

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Zimmer C, Westman J, Cervos-Navarro J (1992) Acute systemic heat stress increases glial fibrillary acidic protein immunoreactivity in brain. An experimental study in the conscious normotensive young rats. Neuroscience 48:889–901

    Article  PubMed  CAS  Google Scholar 

  • Siesjo B (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Smirnov MS, Kiyatkin EA (2008) Fluctuations in central and peripheral temperatures associated with feeding behavior in rats. Amer J Physiol 295:R1414–R1424

    Google Scholar 

  • Stephans SE, Yamamoto BK (1994) Methamphetamine-induced neurotoxicity: role for glutamate and dopamine influx. Synapse 17:203–209

    Article  PubMed  CAS  Google Scholar 

  • Teffe MA, Lay CC, Von Huben SN, Davis SA, Crean RD, Katner SN (2006) Hyperthermia induced by 3,4-methylenedioxymethamphetamine in unrestrained rhesus monkeys. Drug Alcohol Depend 82:276–281

    Article  CAS  Google Scholar 

  • Verma A, Kulkarni SK (1993) Differential role of dopamine receptor subtypes in thermoregulation and stereotypic behavior in naïve and reserpinized rats. Arch Int Pharmacodyn Ther 324:17–32

    PubMed  CAS  Google Scholar 

  • Von Huben SN, Lay CC, Crean RD, Davis SA, Katner SN, Taffe MA (2007) Impact of ambient temperature on hyperthermia induced by (+/−)3,4-methylenedioxymethamphetamine in rhesus macaques. Neurophysichopharmacology 32:673–681

    Article  CAS  Google Scholar 

  • Watson P, Shirreffs SM, Maughan RJ (2005) Blood–brain barrier integrity may be threatened by exercise in a warm environment. Am J Physiol 288:R1689–R1694

    CAS  Google Scholar 

  • Windels F (2006) Neuronal activity: from in vitro preparation to behaving animals. Mol Neurobiol 34:1–26

    Article  PubMed  CAS  Google Scholar 

  • Windels F, Kiyatkin EA (2006) General anesthesia as a factor affecting impulse activity and neuronal responses to putative neurotransmitters. Brain Res 1086:104–116

    Google Scholar 

  • Wirtshafter D, Asin KE (1995) Haloperidol induces Fos expression in the globus pallidus and substantia nigra of cynomolgus monkeys. Brain Res 835:154–161

    Article  Google Scholar 

  • Wirtshafter D, Asin KE (1999) Dopamine antagonists induce Fos-like immunoreactivity in the substantia nigra and entopeduncular nucleus of the rat. Brain Res 670:205–214

    Article  Google Scholar 

  • Wirtshafter D, Asin KE (2003) Effects of haloperidol and clozapine on Fos expression in the primate striatum. Neuroreport 14:2429–2432

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Ricaurte GA, Forno L, Seiden LS (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res 486:73–78

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H (1963) The central effects of xylopinine in mice. Jap J Pharmacol 13:230–239

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Zhu W (1998) The effect of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 287:107–114

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Intramural Research Program of NIDA-NIH. I wish to thank Drs. Magalie Lenoir and Ken T. Wakabayashi for valuable comments on the matter of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Kiyatkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyatkin, E.A. The hidden side of drug action: brain temperature changes induced by neuroactive drugs. Psychopharmacology 225, 765–780 (2013). https://doi.org/10.1007/s00213-012-2957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2957-9

Keywords

Navigation