Skip to main content
Log in

Baseline prepulse inhibition expression predicts the propensity of developing sensitization to the motor stimulant effects of amphetamine in C57BL/6 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The startle reflex to a sudden intense acoustic pulse stimulus is attenuated if the pulse is shortly preceded by a weak prepulse stimulus. This represents a form of sensory gating, known as prepulse inhibition (PPI), observable across species. PPI is modulated by dopamine and readily disrupted by acute amphetamine. Prior repeated exposures to amphetamine also disrupt PPI even when the drug is not present during test, suggesting that a sensitized mesolimbic dopamine system—inducible even by a single exposure to amphetamine—might be responsible. However, this causative link has been challenged by inconsistent efficacy between different amphetamine pre-treatment regimes, which all robustly sensitize the behavioral response to amphetamine.

Methods

Here, the presence of such a link in reverse was tested by comparing the propensity to develop amphetamine sensitization between high- and low-PPI expressing individuals identified within a homogeneous cohort of C57BL/6 mice. Comparison of dopamine content including its metabolites was performed separately in drug naïve mice by post-mortem HPLC.

Results

Behavioral sensitization was substantially stronger in the low-PPI group compared with the high-PPI group, while the magnitude of their response to the first amphetamine challenge was similar. Dopamine content within the nucleus accumbens and medial prefrontal cortex was significantly higher in low-PPI relative to high-PPI mice.

Conclusion

Individuals with weak sensory gating characterized by low basal PPI expression may be more susceptible to the development of dopamine sensitization and therefore at greater risk of developing schizophrenia. Conversely, high baseline expression might predict a resistance to dopaminergic sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240

    Article  PubMed  Google Scholar 

  • Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2012) Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 37:1216–1223

    Article  PubMed  Google Scholar 

  • Bast T, Pezze MA, Feldon J (2002) Dopamine receptor blockade in the rat medial prefrontal cortex reduces spontaneous and amphetamine-induced activity and does not affect prepulse inhibition. Behav Pharmacol 13:669–673

    Article  PubMed  CAS  Google Scholar 

  • Bitanihirwe BK, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U (2010) Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 35:2462–2478

    Article  PubMed  CAS  Google Scholar 

  • Bitanihirwe BK, Dubroqua S, Singer P, Feldon J, Yee BK (2011) Sensorimotor gating and vigilance-dependent choice accuracy: a within-subject correlative analysis in wild-type C57BL/6 mice. Behav Brain Res 217:178–187

    Article  PubMed  Google Scholar 

  • Braff DL (2010) Prepulse inhibition of the startle reflex: a window on the brain in schizophrenia. Curr Top Behav Neurosci 4:349–371

    Article  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Arch Gen Psychiatry 47:181–188

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Cadenhead KS, Light GA, Geyer MA, Braff DL (2000) Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder. Am J Psychiatry 157:55–59

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Csomor PA, Yee BK, Quednow BB, Stadler RR, Feldon J, Vollenweider FX (2006) The monotonic dependency of prepulse inhibition of the acoustic startle reflex on the intensity of the startle-eliciting stimulus. Behav Brain Res 174:143–150

    Article  PubMed  Google Scholar 

  • Csomor PA, Stadler RR, Feldon J, Yee BK, Geyer MA, Vollenweider FX (2008) Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology 33:497–512

    Article  PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1997) Potentiation of prepulse inhibition of the startle reflex in rats: pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. Psychopharmacology (Berl) 132:366–374

    Article  CAS  Google Scholar 

  • Featherstone RE, Kapur S, Fletcher PJ (2007) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1556–1571

    Article  PubMed  CAS  Google Scholar 

  • Feenstra MG (2000) Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. Prog Brain Res 126:133–163

    Article  PubMed  CAS  Google Scholar 

  • Feenstra MG, Botterblom MH, Mastenbroek S (2000) Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100:741–748

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Zuvich E, Marino M, Gasior M (2011) Prepulse inhibition of the startle reflex and response to antipsychotic treatments in two outbred mouse strains in comparison to the inbred DBA/2 mouse. Psychopharmacology (Berl) 215:441–454

    Article  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Graham FK (1975) Presidential Address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  PubMed  CAS  Google Scholar 

  • Hadamitzky M, Harich S, Koch M, Schwabe K (2007) Deficient prepulse inhibition induced by selective breeding of rats can be restored by the dopamine D2 antagonist haloperidol. Behav Brain Res 177:364–367

    Article  PubMed  CAS  Google Scholar 

  • Hadfield MG, Milio C (1988) Isolation-induced fighting in mice and regional brain monoamine utilization. Behav Brain Res 31:93–96

    Article  PubMed  CAS  Google Scholar 

  • Hadfield MG, Milio C (1989) Caffeine and regional brain monoamine utilization in mice. Life Sci 45:2637–2644

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry [Epub ahead of print]

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    Article  PubMed  CAS  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    Article  PubMed  CAS  Google Scholar 

  • Lacroix L, Spinelli S, White W, Feldon J (2000) The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience 97:459–468

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    Article  PubMed  CAS  Google Scholar 

  • Lyon DL, Robbins TW (1975) The action of central nervous system stimulant drugs: a general theory concerning amphetamine effects. In: Essman WB, Valzelli L (eds) Current developments in psychopharmacology. Spectrum, Melbourne, pp. 37–82.

  • Murphy CA, Fend M, Russig H, Feldon J (2001) Latent inhibition, but not prepulse inhibition, is reduced during withdrawal from an escalating dosage schedule of amphetamine. Behav Neurosci 115:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotoxic coordinates, second edition. Academic Press, San Diego

  • Peleg-Raibstein D, Feldon J (2006) Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology 51:947–957

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Feldon J (2008) Effects of withdrawal from an escalating dose of amphetamine on conditioned fear and dopamine response in the medial prefrontal cortex. Behav Brain Res 186:12–22

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Pezze MA, Ferger B, Zhang WN, Murphy CA, Feldon J, Bast T (2005) Activation of dopaminergic neurotransmission in the medial prefrontal cortex by N-methyl-d-aspartate stimulation of the ventral hippocampus in rats. Neuroscience 132:219–232

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Sydekum E, Feldon J (2006a) Differential effects on prepulse inhibition of withdrawal from two different repeated administration schedules of amphetamine. Int J Neuropsychopharmacol 9:737–749

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Sydekum E, Russig H, Feldon J (2006b) Withdrawal from continuous amphetamine administration abolishes latent inhibition but leaves prepulse inhibition intact. Psychopharmacology (Berl) 185:226–239

    Article  CAS  Google Scholar 

  • Peleg-Raibstein D, Sydekum E, Russig H, Feldon J (2006c) Withdrawal from repeated amphetamine administration leads to disruption of prepulse inhibition but not to disruption of latent inhibition. J Neural Transm 113:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Knuesel I, Feldon J (2008) Amphetamine sensitization in rats as an animal model of schizophrenia. Behav Brain Res 191:190–201

    Article  PubMed  CAS  Google Scholar 

  • Peleg-Raibstein D, Yee BK, Feldon J, Hauser J (2009) The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms? Psychopharmacology (Berl) 206:603–621

    Article  CAS  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25:192–216

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  PubMed  CAS  Google Scholar 

  • Rüedi-Bettschen D, Zhang W, Russig H, Ferger B, Weston A, Pedersen EM, Feldon J, Pryce CR (2006) Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. Eur J Neurosci 24:2879–2893

    Article  PubMed  Google Scholar 

  • Russig H, Murphy CA, Feldon J (2005) Behavioural consequences of withdrawal from three different administration schedules of amphetamine. Behav Brain Res 165:26–35

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Yee BK (2012) Reversal of scopolamine-induced disruption of prepulse inhibition by clozapine in mice. Pharmacol Biochem Behav 101:107–114

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009) Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology (Berl) 206:677–698

    Article  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Filion D, Geyer MA, Braff DL (1995) "Normal" personality correlates of sensorimotor, cognitive, and visuospatial gating. Biol Psychiatry 37:286–299

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP (2003) Amphetamine effects on prepulse inhibition across-species: replication and parametric extension. Neuropsychopharmacology 28:640–650

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Kuczenski R, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2006) Forebrain D1 function and sensorimotor gating in rats: effects of D1 blockade, frontal lesions and dopamine denervation. Neurosci Lett 402:40–45

    Article  PubMed  CAS  Google Scholar 

  • Tai CT, Clark AJ, Feldon J, Rawlins JNP (1991) Electrolytic lesions of the nucleus accumbens in rats which abolish the PREE enhance the locomotor response to amphetamine. Exp Brain Res 86:333–340

    Article  PubMed  CAS  Google Scholar 

  • Talledo JA, Sutherland Owens AN, Schortinghuis T, Swerdlow NR (2009) Amphetamine effects on startle gating in normal women and female rats. Psychopharmacology (Berl) 204:165–175

    Article  CAS  Google Scholar 

  • Valls-Solé J, Muñoz JE, Valldeoriola F (2004) Abnormalities of prepulse inhibition do not depend on blink reflex excitability: a study in Parkinson's disease and Huntington's disease. Clin Neurophysiol 115:1527–1536

    Article  PubMed  Google Scholar 

  • Vermetten E, Bremner JD (2002) Circuits and systems in stress. I. Preclinical studies. Depress Anxiety 15:126–147

    Article  PubMed  Google Scholar 

  • Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14:1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Barro M, Csomor PA, Feldon J (2006) Clozapine enhances prepulse inhibition in healthy humans with low but not with high prepulse inhibition levels. Biol Psychiatry 60:597–603

    Article  PubMed  CAS  Google Scholar 

  • Weiss SJ (2007) Neurobiological alterations associated with traumatic stress. Perspect Psychiatr Care 43:114–122

    Article  PubMed  Google Scholar 

  • Yee BK (2000) Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat. Neuroscience 95:675–689

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Feldon J (2009) Distinct forms of prepulse inhibition disruption distinguishable by the associated changes in prepulse-elicited reaction. Behav Brain Res 204:387–395

    Article  PubMed  Google Scholar 

  • Yee BK, Chang D, Feldon J (2004a) The effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29:1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Russig H, Feldon J (2004b) Apomorphine-induced prepulse inhibition disruption is associated with a paradoxical enhancement of prepulse stimulus reactivity. Neuropsychopharmacology 29:240–248

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Chang T, Pietropaolo S, Feldon J (2005) The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res 163:265–276

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Swiss Federal Institute of Technology Zurich. The authors are also grateful to the practicum students and Hannes Sigrist for technical assistance, and to the animal husbandry staff at the Laboratory of Behavioral Neurobiology for their maintenance of the subjects used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daria Peleg-Raibstein or Benjamin K. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peleg-Raibstein, D., Hauser, J., Lopez, L.H.L. et al. Baseline prepulse inhibition expression predicts the propensity of developing sensitization to the motor stimulant effects of amphetamine in C57BL/6 mice. Psychopharmacology 225, 341–352 (2013). https://doi.org/10.1007/s00213-012-2819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2819-5

Keywords

Navigation