Skip to main content

Advertisement

Log in

Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methylphenidate (MPH), the most widely prescribed psychostimulant to treat many neuropsychiatric conditions, is reported to improve attention and speed of processing in survivors of traumatic brain injury (TBI). The neural correlate of this efficacy, however, remains unclear.

Objective

Using perfusion functional magnetic resonance imaging (fMRI) as a biomarker of regional neural activity, the current study aimed to examine the neural correlates of single-dose (0.3 mg/kg) MPH administration in a randomized double-blind placebo-controlled crossover study design.

Methods

Twenty-three individuals with moderate to severe TBI were tested on two occasions approximately 1 week apart. Perfusion fMRI scanning was carried out at rest and while participants performed cognitive tasks requiring sustained attention and working memory.

Results

Behaviorally, MPH significantly improved both accuracy and reaction time (RT) in the sustained attention task but only RT in the working memory task. A trend of global reduction of cerebral blood flow by MPH was observed in all task conditions including resting. Voxel-wise whole-brain analysis revealed an interaction effect of drug by condition (MPH–placebo X task–rest) for the sustained attention task in the left posterior superior parietal cortex and parieto–occipital junction (BA 7/19). The magnitude of drug-related deactivation of this area during task performance was correlated with improvement in RT.

Conclusion

Suppression of activity in this area during task performance may reflect a compensatory mechanism by which MPH ameliorates attention impairments in TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre GK, Zarahn E, D'Esposito M (1998) The inferential impact of global signal covariates in functional neuroimaging analyses. NeuroImage 8:302–306

    Article  PubMed  CAS  Google Scholar 

  • Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. NeuroImage 15:488–500

    Article  PubMed  CAS  Google Scholar 

  • Aman MG, Vamos M, Werry JS (1984) Effects of methylphenidate in normal adults with reference to drug action in hyperactivity. Aust N Z J Psychiatry 18:86–88

    Article  PubMed  CAS  Google Scholar 

  • Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N (2006) Effects of methylphenidate on cognitive function and gait in patients with Parkinson's disease: a pilot study. Clin Neuropharmacol 29:15–17

    Article  PubMed  CAS  Google Scholar 

  • Avants B, Schoenemann PT, Gee JC (2006) Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med Image Anal 10:397–412

    Article  PubMed  Google Scholar 

  • Avants B, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12:26–41

    Article  PubMed  CAS  Google Scholar 

  • Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA, Katz S (1996) Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychol Sci 7:25–31

    Article  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philosophical transactions of the Royal Society of London Series B. Biological sciences 360:1001–1013

    Article  PubMed  Google Scholar 

  • Behrmann M, Geng JJ, Shomstein S (2004) Parietal cortex and attention. Curr Opin Neurobiol 14:212–217

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Bullmore E, Suckling J, Zelaya F, Long C, Honey G, Reed L, Routledge C, Ng V, Fletcher P, Brown J, Williams SC (2003) Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics. Cereb Cortex 13:144–154

    Article  PubMed  Google Scholar 

  • Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75:711–721

    PubMed  CAS  Google Scholar 

  • Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron JC, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696

    Article  PubMed  CAS  Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Frith CD, Frackowiak RS, Grasby PM (1996) A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Frackowiak RS, Frith CD (1998) Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853

    Article  PubMed  CAS  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  PubMed  CAS  Google Scholar 

  • Detre JA, Wang J, Wang Z, Rao H (2009) Arterial spin-labeled perfusion MRI in basic and clinical neuroscience. Curr Opin Neurol 22:348–355

    Article  PubMed  Google Scholar 

  • Dodds CM, Muller U, Clark L, van Loon A, Cools R, Robbins TW (2008) Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning. J Neurosci 28:5976–5982

    Article  PubMed  CAS  Google Scholar 

  • Epstein JN, Casey BJ, Tonev ST, Davidson MC, Reiss AL, Garrett A, Hinshaw SP, Greenhill LL, Glover G, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Spicer J (2007) ADHD- and medication-related brain activation effects in concordantly affected parent–child dyads with ADHD. J Child Psychol Psychiatry 48:899–913

    Article  PubMed  Google Scholar 

  • Friston KJ, Ashburner J, Frith CD, Poline J, Heather JD, Frackowiak R (1995) Spatial registration and normalization of images. Hum Brain Mapp 3:165–189

    Article  Google Scholar 

  • Goldstein RZ, Volkow ND (2011) Oral methylphenidate normalizes cingulate activity and decreases impulsivity in cocaine addiction during an emotionally salient cognitive task. Neuropsychopharmacology 36:366–367

    Article  PubMed  Google Scholar 

  • Goldstein RZ, Woicik PA, Maloney T, Tomasi D, Alia-Klein N, Shan J, Honorio J, Samaras D, Wang R, Telang F, Wang GJ, Volkow ND (2010) Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc Natl Acad Sci U S A 107:16667–16672

    Article  PubMed  CAS  Google Scholar 

  • Gualtieri CT, Evans RW (1988) Stimulant treatment for the neurobehavioural sequelae of traumatic brain injury. Brain Inj 2:273–290

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Friston KJ (1998) Generalizability, random effects, and population inference. NeuroImage 7:S754

    Google Scholar 

  • Jennett B, Snoek J, Bond MR, Brooks N (1981) Disability after severe head injury: observations on the use of the Glasgow Outcome Scale. J Neurol Neurosurg Psychiatry 44:285–293

    Article  PubMed  CAS  Google Scholar 

  • Kaelin DL, Cifu DX, Matthies B (1996) Methylphenidate effect on attention deficit in the acutely brain-injured adult. Arch Phys Med Rehabil 77:6–9

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Whyte J, Wang J, Rao H, Tang KZ, Detre JA (2006a) Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks. NeuroImage 31:376–385

    Article  PubMed  Google Scholar 

  • Kim YH, Ko MH, Na SY, Park SH, Kim KW (2006b) Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: a double-blind placebo-controlled study. Clin Rehabil 20:24–30

    Article  PubMed  Google Scholar 

  • Kim J, Avants B, Patel S, Whyte J, Coslett BH, Pluta J, Detre JA, Gee JC (2008) Structural consequences of diffuse traumatic brain injury: a large deformation tensor-based morphometry study. NeuroImage 39:1014–1026

    Article  PubMed  Google Scholar 

  • Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, Slattery J, Gee J, Coslett BH, Detre JA (2010) Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion fMRI study. J Neurotrauma 27:1399–1411

    Article  PubMed  Google Scholar 

  • Kinomura S, Larsson J, Gulyas B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515

    Article  PubMed  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Hoffmann R, Garavan H, Stein EA (2003) Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15:1028–1038

    Article  PubMed  Google Scholar 

  • Lee H, Kim SW, Kim JM, Shin IS, Yang SJ, Yoon JS (2005) Comparing effects of methylphenidate, sertraline and placebo on neuropsychiatric sequelae in patients with traumatic brain injury. Hum Psychopharmacol 20:97–104

    Article  PubMed  CAS  Google Scholar 

  • Li CS, Morgan PT, Matuskey D, Abdelghany O, Luo X, Chang JL, Rounsaville BJ, Ding YS, Malison RT (2010) Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proc Natl Acad Sci U S A 107:14455–14459

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Wu WC, Wang J, Detre JA, Dinges DF, Rao H (2010) Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect. NeuroImage 49:3426–3435

    Article  PubMed  Google Scholar 

  • Mai JK, Assheuer JK, Paxinos G (2004) Atlas of the human brain, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20:RC65

    PubMed  CAS  Google Scholar 

  • Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, High WM Jr, Ricker JH (2001) Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil 16:343–355

    Article  PubMed  CAS  Google Scholar 

  • Morris SB, DeShon RP (2002) Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods 7:105–125

    Article  PubMed  Google Scholar 

  • Newberg AB, Iversen J (2003) The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypotheses 61:282–291

    Article  PubMed  CAS  Google Scholar 

  • Newberg AB, Alavi A, Baime M, Pourdehnad M, Santanna J, d'Aquili E (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res 106:113–122

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25:46–59

    Article  PubMed  Google Scholar 

  • Palmer SM, Rosa MG (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24:2389–2405

    Article  PubMed  CAS  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  PubMed  CAS  Google Scholar 

  • Plenger PM, Dixon CE, Castillo RM, Frankowski RF, Yablon SA, Levin HS (1996) Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: a preliminary double-blind placebo-controlled study. Arch Phys Med Rehabil 77:536–540

    Article  PubMed  CAS  Google Scholar 

  • Poldrack RA (2007) Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2:67–70

    Article  PubMed  Google Scholar 

  • Portin K, Hari R (1999) Human parieto-occipital visual cortex: lack of retinotopy and foveal magnification. Proceedings Biological sciences/The Royal Society 266:981–985

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Robbins TW, Hodges JR, Mehta MA, Nestor PJ, Clark L, Sahakian BJ (2006) Methylphenidate ('Ritalin') can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology 31:651–658

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Inoff-Germain G (2002) Responses to methylphenidate in Attention-Deficit/Hyperactivity Disorder and normal children: update 2002. J Atten Disord 6(Suppl 1):S57–S60

    PubMed  Google Scholar 

  • Rhodes SM, Coghill DR, Matthews K (2004) Methylphenidate restores visual memory, but not working memory function in attention deficit-hyperkinetic disorder. Psychopharmacology (Berl) 175:319–330

    Article  CAS  Google Scholar 

  • Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Halari R, Mohammad AM, Taylor E, Brammer M (2011) Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biol Psychiatry 70:255–262

    Article  PubMed  CAS  Google Scholar 

  • Rutland-Brown W, Langlois JA, Thomas KE, Xi YL (2006) Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil 21:544–548

    Article  PubMed  Google Scholar 

  • Schwartz MF, Brecher AR, Whyte J, Klein MG (2005) A patient registry for cognitive rehabilitation research: a strategy for balancing patients' privacy rights with researchers' need for access. Arch Phys Med Rehabil 86:1807–1814

    Article  PubMed  Google Scholar 

  • Shafritz KM, Marchione KE, Gore JC, Shaywitz SE, Shaywitz BA (2004) The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. Am J Psychiatry 161:1990–1997

    Article  PubMed  Google Scholar 

  • Siddall OM (2005) Use of methylphenidate in traumatic brain injury. Ann Pharmacother 39:1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Sivan M, Neumann V, Kent R, Stroud A, Bhakta BB (2010) Pharmacotherapy for treatment of attention deficits after non-progressive acquired brain injury. A systematic review Clin Rehabil 24:110–121

    Article  Google Scholar 

  • Strauss J, Lewis JL, Klorman R, Peloquin LJ, Perlmutter RA, Salzman LF (1984) Effects of methylphenidate on young adults' performance and event-related potentials in a vigilance and a paired-associates learning test. Psychophysiology 21:609–621

    Article  PubMed  CAS  Google Scholar 

  • Swanson J, Baler RD, Volkow ND (2011) Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. Neuropsychopharmacology 36:207–226

    Article  PubMed  CAS  Google Scholar 

  • Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. NeuroImage 54:3101–3110

    Article  PubMed  CAS  Google Scholar 

  • Turner DC, Blackwell AD, Dowson JH, McLean A, Sahakian BJ (2005) Neurocognitive effects of methylphenidate in adult attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 178:286–295

    Article  CAS  Google Scholar 

  • Tye KM, Tye LD, Cone JJ, Hekkelman EF, Janak PH, Bonci A (2010) Methylphenidate facilitates learning-induced amygdala plasticity. Nat Neurosci 13:475–481

    Article  PubMed  CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  • Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 95:14494–14499

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. European neuropsychopharmacology. The J of the Eur Coll of Neuropsychopharmacol 20:519–534

    Article  Google Scholar 

  • van den Heuvel M, Mandl R, Hulshoff Pol H (2008) Normalized cut group clustering of resting-state FMRI data. PLoS One 3:e2001

    Article  PubMed  Google Scholar 

  • Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M, Miller MI (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378

    Article  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Telang F, Logan J, Wong C, Ma J, Pradhan K, Benveniste H, Swanson JM (2008) Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS One 3:e2017

    Article  PubMed  Google Scholar 

  • Wang GJ, Volkow ND, Fowler JS, Ferrieri R, Schlyer DJ, Alexoff D, Pappas N, Lieberman J, King P, Warner D et al (1994) Methylphenidate decreases regional cerebral blood flow in normal human subjects. Life Sci 54:PL143–PL146

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Aguirre GK, Kimberg DY, Detre JA (2003a) Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T. NeuroImage 19:1449–1462

    Article  PubMed  Google Scholar 

  • Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA (2003b) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802

    Article  PubMed  Google Scholar 

  • Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA (2005) Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study. Radiology 235:218–228

    Article  PubMed  Google Scholar 

  • Wang J, Rao H, Korczykowski M, Wintering N, Pluta J, Khalsa DS, Newberg AB (2011) Cerebral blood flow changes associated with different meditation practices and perceived depth of meditation. Psychiatry Res 191:60–67

    Article  PubMed  Google Scholar 

  • Whyte J, Polansky M, Fleming M, Coslett HB, Cavallucci C (1995) Sustained arousal and attention after traumatic brain injury. Neuropsychologia 33:797–813

    Article  PubMed  CAS  Google Scholar 

  • Whyte J, Hart T, Schuster K, Fleming M, Polansky M, Coslett HB (1997) Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial. Am J Phys Med Rehabil 76:440–450

    Article  PubMed  CAS  Google Scholar 

  • Whyte J, Hart T, Laborde A, Rosenthal M (2004a) Rehabilitation issues in traumatic brain injury. In: DeLisa JA, Gans BM, Walsh NE (eds) Physical medicine and rehabilitation: principles and practice. Lippincott Williams & Wilkins, Philadelphia, pp 1677–1714

    Google Scholar 

  • Whyte J, Hart T, Vaccaro M, Grieb-Neff P, Risser A, Polansky M, Coslett HB (2004b) Effects of methylphenidate on attention deficits after traumatic brain injury: a multidimensional, randomized, controlled trial. Am J Phys Med Rehabil 83:401–420

    Article  PubMed  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Kathy Z. Tang, B.A.; John Slattery, B.A.; Geoffrey K. Aguirre, MD, Ph.D.; Daniel Kimberg, Ph.D.; John Pluta, B.S.; and Allen Osman, Ph.D. for their help with subject recruitment, data analysis, and manuscript review. The assistance of MRI technicians Doris Cain, Patricia O’Donnell, and Norman Butler is also gratefully acknowledged. This study was supported by grant R24HD39621 (to J.W.), R24HD050836 (to J.W.; www.ncrrn.org), and P30NS045839 (to J.A.D.) from the NIH.

Disclosure

Dr. Detre is an inventor on the University of Pennsylvania’s patent for ASL MRI and is entitled to institutional royalty sharing for its licensure.

Conflict of interest

The authors declare that there are no other potential conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junghoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Whyte, J., Patel, S. et al. Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology 222, 47–57 (2012). https://doi.org/10.1007/s00213-011-2622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2622-8

Keywords

Navigation