Skip to main content

Functional Magnetic Resonance Imaging in Mild Traumatic Brain Injury

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

Patients with concussion (mild traumatic brain injury (mTBI)) frequently complain of both cognitive and emotional disturbances in the days to weeks after their injury, with a percentage of patients (5–20 %) remaining chronically symptomatic. Relative to other static neuroimaging techniques, functional MRI (fMRI) offers great promise for elucidating the underlying neuropathology associated with dynamic processes such as higher-order cognition. Not surprisingly, the majority of mTBI studies have focused on working memory and attention, with results suggesting a complex relationship between cognitive load/attentional demand and functional activation. More recently researchers have used functional connectivity analyses to investigate how injury may affect intrinsic neuronal activation. Several groups have reported that connectivity within the default-mode network is disrupted following injury, which may also contribute to patient reports of increased distractibility. The general benefits and drawbacks of the two methods (evoked versus connectivity studies) are discussed in the context of the injury literature. Mood disturbances are also prevalent following concussion, but fewer studies (evoked or connectivity) have been conducted to investigate the integrity of the emotional processing network. Finally, fMRI can also be used as a surrogate biomarker of pharmacological and cognitive rehabilitation treatment efficacy, although only preliminary work has been conducted in this area to date. The chapter also discusses the methodological challenges of performing and evaluating fMRI research with brain-injured patients, including clinical heterogeneity in patient selection criteria and variations in scan time post-injury. Finally, the chapter concludes with a discussion of the physiological underpinnings of the blood oxygen level-dependent (BOLD) response and the many ways in which trauma can affect this complex signal. We conclude that the fMRI signal represents a complex filter through which researchers can more directly measure the physiological correlates of concussive symptoms, an important goal for this burgeoning field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta, GA: CDC; 2010.

    Google Scholar 

  2. Ruff RM, Iverson GL, Barth JT, Bush SS, Broshek DK. Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Arch Clin Neuropsychol. 2009;24(1):3–10.

    PubMed  Google Scholar 

  3. Hughes DG, Jackson A, Mason DL, Berry E, Hollis S, Yates DW. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery. Neuroradiology. 2004;46(7):550–8.

    PubMed  Google Scholar 

  4. Iverson GL. Complicated vs uncomplicated mild traumatic brain injury: acute neuropsychological outcome. Brain Inj. 2006;20(13–14):1335–44.

    PubMed  Google Scholar 

  5. Belanger HG, Vanderploeg RD, Curtiss G, Warden DL. Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2007;19(1):5–20.

    PubMed  Google Scholar 

  6. Bigler ED, Maxwell WL. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 2012;6(2):108–36.

    PubMed  Google Scholar 

  7. McAllister TW, Saykin AJ, Flashman LA, Sparling MB, Johnson SC, Guerin SJ, et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53(6):1300–8.

    CAS  PubMed  Google Scholar 

  8. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14(5):1004–12.

    CAS  PubMed  Google Scholar 

  9. McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav. 2012;6(2):193–207.

    PubMed  Google Scholar 

  10. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage. 2012;59(1):511–8.

    PubMed Central  PubMed  Google Scholar 

  11. Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32(11):1825–35.

    PubMed Central  PubMed  Google Scholar 

  12. Shumskaya E, Andriessen TM, Norris DG, Vos PE. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology. 2012;79(2):175–82.

    PubMed  Google Scholar 

  13. Belanger HG, Curtiss G, Demery JA, Lebowitz BK, Vanderploeg RD. Factors moderating neuropsychological outcomes following mild traumatic brain injury: a meta-analysis. J Int Neuropsychol Soc. 2005;11(3):215–27.

    PubMed  Google Scholar 

  14. Bigler ED. Neuropsychology and clinical neuroscience of persistent post-concussive syndrome. J Int Neuropsychol Soc. 2008;14(1):1–22.

    PubMed  Google Scholar 

  15. Iverson GL. Outcome from mild traumatic brain injury. Curr Opin Psychiatry. 2005;18(3):301–17.

    PubMed  Google Scholar 

  16. Schretlen DJ, Shapiro AM. A quantitative review of the effects of traumatic brain injury on cognitive functioning. Int Rev Psychiatry. 2003;15(4):341–9.

    PubMed  Google Scholar 

  17. Lehman EJ, Hein MJ, Baron SL, Gersic CM. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012;79(19):1970–4.

    PubMed  Google Scholar 

  18. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35.

    PubMed Central  PubMed  Google Scholar 

  19. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH, Alvarez VE, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2012;136(Pt 1):43–64.

    PubMed  Google Scholar 

  20. Rosenbaum SB, Lipton ML. Embracing chaos: the scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging Behav. 2012;6(2):255–82.

    PubMed  Google Scholar 

  21. McAllister TW, Flashman LA, McDonald BC, Saykin AJ. Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma. 2006;23(10):1450–67.

    PubMed  Google Scholar 

  22. Smits M, Dippel DW, Houston GC, Wielopolski PA, Koudstaal PJ, Hunink MG, et al. Postconcussion syndrome after minor head injury: brain activation of working memory and attention. Hum Brain Mapp. 2009;30(9):2789–803.

    PubMed  Google Scholar 

  23. Gosselin N, Bottari C, Chen JK, Petrides M, Tinawi S, de Guise E, et al. Electrophysiology and functional MRI in post-acute mild traumatic brain injury. J Neurotrauma. 2011;28(3):329–41.

    PubMed  Google Scholar 

  24. Stulemeijer M, Vos PE, van der Werf S, Van DG, Rijpkema M, Fernandez G. How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. J Neurotrauma. 2010;27(9):1585–95.

    PubMed  Google Scholar 

  25. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage. 2004;22(1):68–82.

    PubMed  Google Scholar 

  26. Chen JK, Johnston KM, Collie A, McCrory P, Ptito A. A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. J Neurol Neurosurg Psychiatry. 2007;78(11):1231–8.

    PubMed  Google Scholar 

  27. Chen JK, Johnston KM, Petrides M, Ptito A. Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch Gen Psychiatry. 2008;65(1):81–9.

    PubMed  Google Scholar 

  28. Jantzen KJ, Anderson B, Steinberg FL, Kelso JA. A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR Am J Neuroradiol. 2004;25(5):738–45.

    PubMed  Google Scholar 

  29. Lovell MR, Pardini JE, Welling J, Collins MW, Bakal J, Lazar N, et al. Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery. 2007;61(2):352–9.

    PubMed  Google Scholar 

  30. Talavage TM, Nauman E, Breedlove EL, Yoruk U, Dye AE, Morigaki K, et al. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma. E-publication April 2013.

    Google Scholar 

  31. Mayer AR, Mannell MV, Ling J, Elgie R, Gasparovic C, Phillips JP, et al. Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Hum Brain Mapp. 2009;30(12):4152–66.

    PubMed Central  PubMed  Google Scholar 

  32. Yang Z, Yeo R, Pena A, Ling J, Klimaj S, Campbell R, et al. A fMRI study of auditory orienting and inhibition of return in pediatric mild traumatic brain injury. J Neurotrauma. 2012;26(12):2124–36.

    Google Scholar 

  33. Mayer AR, Yang Z, Yeo RA, Pena A, Ling JM, Mannell MV, et al. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):343–54.

    PubMed  Google Scholar 

  34. Witt ST, Lovejoy DW, Pearlson GD, Stevens MC. Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging Behav. 2010;4(3–4):232–47.

    PubMed  Google Scholar 

  35. Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res. 2010;202(2):341–54.

    PubMed Central  PubMed  Google Scholar 

  36. McAllister TW, Flashman LA, McDonald BC, Ferrell RB, Tosteson TD, Yanofsky NN, et al. Dopaminergic challenge with bromocriptine one month after mild traumatic brain injury: altered working memory and BOLD response. J Neuropsychiatry Clin Neurosci. 2011;23(3):277–86.

    CAS  PubMed  Google Scholar 

  37. McAllister TW, McDonald BC, Flashman LA, Ferrell RB, Tosteson TD, Yanofsky NN, et al. Alpha-2 adrenergic challenge with guanfacine one month after mild traumatic brain injury: altered working memory and BOLD response. Int J Psychophysiol. 2011;82(1):107–14.

    PubMed Central  PubMed  Google Scholar 

  38. Laatsch LK, Thulborn KR, Krisky CM, Shobat DM, Sweeney JA. Investigating the neurobiological basis of cognitive rehabilitation therapy with fMRI. Brain Inj. 2004;18(10):957–74.

    CAS  PubMed  Google Scholar 

  39. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    CAS  PubMed  Google Scholar 

  40. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab. 2006;26(7):865–77.

    CAS  PubMed  Google Scholar 

  41. Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, et al. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab. 2009;29(3):441–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30(1):33–348.

    PubMed  Google Scholar 

  43. Huang M, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, et al. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma. 2009;26(8):1213–26.

    CAS  PubMed  Google Scholar 

  44. Huang MX, Nichols S, Robb A, Angeles A, Drake A, Holland M, et al. An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. Neuroimage. 2012;61(4):1067–82.

    PubMed  Google Scholar 

  45. Lewine J, Davis J, Sloan J, Kodituwakku P, Orrison WJ. Neuromagnetic assessment of pathophysiologic brain activity induced by minor head. AJNR Am J Neuroradiol. 1999;20(5):857–66.

    CAS  PubMed  Google Scholar 

  46. Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage. 2007;37(4):1073–82.

    Google Scholar 

  47. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2(1):25–32.

    PubMed  Google Scholar 

  48. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009;106(31):13040–5.

    CAS  PubMed  Google Scholar 

  49. Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci. 2008;1129:119–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp. 2009;30(8):2393–400.

    CAS  PubMed  Google Scholar 

  51. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2010;133(1):161–71.

    PubMed  Google Scholar 

  52. Buckner RL, Andrews-Hanna J, Schacter D. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    PubMed  Google Scholar 

  53. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65(4):550–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci. 1999;11(1):80–95.

    CAS  PubMed  Google Scholar 

  55. Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, et al. Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci USA. 2008;105(16):6173–8.

    CAS  PubMed  Google Scholar 

  56. Weissman DH, Roberts KC, Visscher KM, Woldorff MG. The neural bases of momentary lapses in attention. Nat Neurosci. 2006;9(7):971–8.

    CAS  PubMed  Google Scholar 

  57. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van E, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–8.

    CAS  PubMed  Google Scholar 

  58. Nakamura T, Hillary FG, Biswal BB. Resting network plasticity following brain injury. PLoS One. 2009;4(12):e8220.

    PubMed Central  PubMed  Google Scholar 

  59. Bonnelle V, Leech R, Kinnunen KM, Ham TE, Beckmann CF, De Boissezon X, et al. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci. 2011;31(38):13442–51.

    CAS  PubMed  Google Scholar 

  60. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265(3):882–92.

    PubMed  Google Scholar 

  61. Zhang K, Johnson B, Gay M, Horovitz SG, Hallett M, Sebastianelli W, et al. Default mode network in concussed individuals in response to the YMCA physical stress test. J Neurotrauma. 2012;29(5):756–65.

    PubMed  Google Scholar 

  62. Slobounov SM, Gay M, Zhang K, Johnson B, Pennell D, Sebastianelli W, et al. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage. 2011;55(4):1716–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tang L, Ge Y, Sodickson DK, Miles L, Zhou Y, Reaume J, et al. Thalamic resting-state functional networks: disruption in patients with mild traumatic brain injury. Radiology. 2011;260(3):831–40.

    PubMed  Google Scholar 

  64. Stevens MC, Lovejoy D, Kim J, Oakes H, Kureshi I, Witt ST. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):293–318.

    PubMed  Google Scholar 

  65. Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas HD, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA. 2002;99(1):455–60.

    CAS  PubMed  Google Scholar 

  66. Vollm B, Richardson P, McKie S, Elliott R, Deakin JF, Anderson IM. Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci. 2006;23(2):552–60.

    PubMed  Google Scholar 

  67. Wagner G, Koch K, Schachtzabel C, Sobanski T, Reichenbach JR, Sauer H, et al. Differential effects of serotonergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression. J Psychiatry Neurosci. 2010;35(4):247–57.

    PubMed Central  PubMed  Google Scholar 

  68. Hutchison M, Mainwaring LM, Comper P, Richards DW, Bisschop SM. Differential emotional responses of varsity athletes to concussion and musculoskeletal injuries. Clin J Sport Med. 2009;19(1):13–9.

    PubMed  Google Scholar 

  69. Hutchison M, Comper P, Mainwaring L, Richards D. The influence of musculoskeletal injury on cognition: implications for concussion research. Am J Sports Med. 2011;39(11):2331–7.

    PubMed  Google Scholar 

  70. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma. 2008;25(9):1049–56.

    PubMed  Google Scholar 

  71. Kashluba S, Hanks RA, Casey JE, Millis SR. Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Arch Phys Med Rehabil. 2008;89(5):904–11.

    PubMed  Google Scholar 

  72. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36(3):228–35.

    PubMed Central  PubMed  Google Scholar 

  73. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    CAS  PubMed  Google Scholar 

  74. Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118(2):115–28.

    PubMed  Google Scholar 

  75. Booher MA, Wisniewski J, Smith BW, Sigurdsson A. Comparison of reporting systems to determine concussion incidence in NCAA Division I collegiate football. Clin J Sport Med. 2003;13(2):93–5.

    PubMed  Google Scholar 

  76. Echemendia RJ, Cantu RC. Return to play following sports-related mild traumatic brain injury: the role for neuropsychology. Appl Neuropsychol. 2003;10(1):48–55.

    PubMed  Google Scholar 

  77. Greenwald RM, Chu JJ, Beckwith JG, Crisco JJ. A proposed method to reduce underreporting of brain injury in sports. Clin J Sport Med. 2012;22(2):83–5.

    PubMed  Google Scholar 

  78. Bianchini KJ, Curtis KL, Greve KW. Compensation and malingering in traumatic brain injury: a dose–response relationship? Clin Neuropsychol. 2006;20(4):831–47.

    PubMed  Google Scholar 

  79. Greve KW, Bianchini KJ, Doane BM. Classification accuracy of the test of memory malingering in traumatic brain injury: results of a known-groups analysis. J Clin Exp Neuropsychol. 2006;28(7):1176–90.

    PubMed  Google Scholar 

  80. Chrisman SP, Quitiquit C, Rivara FP. Qualitative study of barriers to concussive symptom reporting in high school athletics. J Adolesc Health. 2013;52(3):330–5.

    PubMed  Google Scholar 

  81. Gilbert F, Johnson LS. The impact of American tackle football-related concussion in youth athletes. AJOB Neurosci. 2011;2(4):48–59.

    Google Scholar 

  82. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med. 2004;14(1):13–7.

    PubMed  Google Scholar 

  83. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, et al. Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery. 2005;57(4):719–26.

    PubMed  Google Scholar 

  84. Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding Jr HP, Matthews A, et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007;39(6):903–9.

    PubMed  Google Scholar 

  85. Harmon KG, Drezner JA, Gammons M, Guskiewicz KM, Halstead M, Herring SA, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):15–26.

    PubMed  Google Scholar 

  86. McCrory P, Meeuwisse WH, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250–8.

    PubMed  Google Scholar 

  87. Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2549–55.

    CAS  PubMed  Google Scholar 

  88. McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2556–63.

    CAS  PubMed  Google Scholar 

  89. Friess SH, Ichord RN, Ralston J, Ryall K, Helfaer MA, Smith C, et al. Repeated traumatic brain injury affects composite cognitive function in piglets. J Neurotrauma. 2009;10:1111–21.

    Google Scholar 

  90. Dikmen SS, Bombardier CH, Machamer JE, Fann JR, Temkin NR. Natural history of depression in traumatic brain injury. Arch Phys Med Rehabil. 2004;85(9):1457–64.

    PubMed  Google Scholar 

  91. Jorge RE, Robinson RG, Starkstein SE, Arndt SV. Depression and anxiety following traumatic brain injury. J Neuropsychiatry Clin Neurosci. 1993;5(4):469–74.

    Google Scholar 

  92. Koponen S, Taiminen T, Portin R, Himanen L, Isoniemi H, Heinonen H, et al. Axis I and II psychiatric disorders after traumatic brain injury: a 30-year follow-up study. Am J Psychiatry. 2002;159(8):1315–21.

    PubMed  Google Scholar 

  93. Kreutzer JS, Seel RT, Gourley E. The prevalence and symptom rates of depression after traumatic brain injury: a comprehensive examination. Brain Inj. 2001;15(7):563–76.

    CAS  PubMed  Google Scholar 

  94. Covassin T, Elbin III RJ, Larson E, Kontos AP. Sex and age differences in depression and baseline sport-related concussion neurocognitive performance and symptoms. Clin J Sport Med. 2012;22(2):98–104.

    PubMed  Google Scholar 

  95. Kontos AP, Covassin T, Elbin RJ, Parker T. Depression and neurocognitive performance after concussion among male and female high school and collegiate athletes. Arch Phys Med Rehabil. 2012;93(10):1751–6.

    PubMed  Google Scholar 

  96. Schaal K, Tafflet M, Nassif H, Thibault V, Pichard C, Alcotte M, et al. Psychological balance in high level athletes: gender-based differences and sport-specific patterns. PLoS One. 2011;6(5):e19007.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. American College of Health Association. American College Health Association-National College Health Assessment II: Reference Group Executive Summary Fall 2011. Hanover, MD: American College Health Association; 2012.

    Google Scholar 

  98. Donohue B, Covassin T, Lancer K, Dickens Y, Miller A, Hash A, et al. Examination of psychiatric symptoms in student athletes. J Gen Psychol. 2004;131(1):29–35.

    PubMed  Google Scholar 

  99. Eisenberg D, Gollust SE, Golberstein E, Hefner JL. Prevalence and correlates of depression, anxiety, and suicidality among university students. Am J Orthopsychiatry. 2007;77(4):534–42.

    PubMed  Google Scholar 

  100. Ackery A, Provvidenza C, Tator CH. Concussion in hockey: compliance with return to play advice and follow-up status. Can J Neurol Sci. 2009;36(2):207–12.

    PubMed  Google Scholar 

  101. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358(5):453–63.

    CAS  PubMed  Google Scholar 

  102. Konrad C, Geburek AJ, Rist F, Blumenroth H, Fischer B, Husstedt I, et al. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol Med. 2011;41(6):1197–211.

    CAS  PubMed  Google Scholar 

  103. Lange RT, Iverson GL, Rose A. Post-concussion symptom reporting and the “good-old-days” bias following mild traumatic brain injury. Arch Clin Neuropsychol. 2010;25(5):442–50.

    PubMed  Google Scholar 

  104. Mittenberg W, Strauman S. Diagnosis of mild head injury and the postconcussion syndrome. J Head Trauma Rehabil. 2000;15(2):783–91.

    CAS  PubMed  Google Scholar 

  105. Yang CC, Hua MS, Tu YK, Huang SJ. Early clinical characteristics of patients with persistent post-concussion symptoms: a prospective study. Brain Inj. 2009;23(4):299–306.

    PubMed  Google Scholar 

  106. Max JE, Keatley E, Wilde EA, Bigler ED, Levin HS, Schachar RJ, et al. Anxiety disorders in children and adolescents in the first six months after traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2011;23(1):29–39.

    PubMed  Google Scholar 

  107. Max JE, Keatley E, Wilde EA, Bigler ED, Schachar RJ, Saunders AE, et al. Depression in children and adolescents in the first 6 months after traumatic brain injury. Int J Dev Neurosci. 2012;30(3):239–45.

    PubMed Central  PubMed  Google Scholar 

  108. Yeates KO, Kaizar E, Rusin J, Bangert B, Dietrich A, Nuss K, et al. Reliable change in postconcussive symptoms and its functional consequences among children with mild traumatic brain injury. Arch Pediatr Adolesc Med. 2012;166(7):615–22.

    PubMed Central  PubMed  Google Scholar 

  109. Field M, Collins MW, Lovell MR, Maroon J. Does age play a role in recovery from sports-related concussion? A comparison of high school and collegiate athletes. J Pediatr. 2003;142(5):546–53.

    PubMed  Google Scholar 

  110. McCrory P, Johnston K, Meeuwisse W, Aubry M, Cantu R, Dvorak J, et al. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Br J Sports Med. 2005;39(4):196–204.

    CAS  PubMed  Google Scholar 

  111. Bombardier CH, Fann JR, Temkin NR, Esselman PC, Barber J, Dikmen SS. Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA. 2010;303(19):1938–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Cicerone KD, Kalmar K. Does premorbid depression influence post-concussive symptoms and neuropsychological functioning? Brain Inj. 1997;11(9):643–8.

    CAS  PubMed  Google Scholar 

  113. Clarke LA, Genat RC, Anderson JF. Long-term cognitive complaint and post-concussive symptoms following mild traumatic brain injury: the role of cognitive and affective factors. Brain Inj. 2012;26(3):298–307.

    PubMed  Google Scholar 

  114. Alderfer BS, Arciniegas DB, Silver JM. Treatment of depression following traumatic brain injury. J Head Trauma Rehabil. 2005;20(6):544–62.

    PubMed  Google Scholar 

  115. Bay E, Kirsch N, Gillespie B. Chronic stress conditions do explain posttraumatic brain injury depression. Res Theory Nurs Pract. 2004;18(2–3):213–28.

    PubMed  Google Scholar 

  116. Pagulayan KF, Hoffman JM, Temkin NR, Machamer JE, Dikmen SS. Functional limitations and depression after traumatic brain injury: examination of the temporal relationship. Arch Phys Med Rehabil. 2008;89(10):1887–92.

    PubMed  Google Scholar 

  117. Dantzer R. Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci. 2001;933:222–34.

    CAS  PubMed  Google Scholar 

  118. Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011;36(3):426–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dantzer R. Depression and inflammation: an intricate relationship. Biol Psychiatry. 2012;71(1):4–5.

    PubMed  Google Scholar 

  120. Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy—a unifying hypothesis. Surg Neurol Int. 2011;2:107.

    PubMed Central  PubMed  Google Scholar 

  121. Patterson ZR, Holahan MR. Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci. 2012;6:58.

    PubMed Central  PubMed  Google Scholar 

  122. Bellgowan P, Singh R, Kuplicki R, Taylor A, Polanski D, Allen T, et al. Global functional connecitivity in the visceromotor network is negatively correlated with IL-1ß serum levels in concussed athletes. J Neurotrauma. 2012;29(10):58.

    Google Scholar 

  123. Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16(1):61–71.

    PubMed  Google Scholar 

  124. Holsboer F, Lauer CJ, Schreiber W, Krieg JC. Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology. 1995;62(4):340–7.

    CAS  PubMed  Google Scholar 

  125. Urry HL, van Reekum CM, Johnstone T, Kalin NH, Thurow ME, Schaefer HS, et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci. 2006;26(16):4415–25.

    CAS  PubMed  Google Scholar 

  126. Watson D, Pennebaker JW. Health complaints, stress, and distress: exploring the central role of negative affectivity. Psychol Rev. 1989;96(2):234–54.

    CAS  PubMed  Google Scholar 

  127. Erickson K, Drevets W, Schulkin J. Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci Biobehav Rev. 2003;27(3):233–46.

    CAS  PubMed  Google Scholar 

  128. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev. 1992;16(2):115–30.

    CAS  PubMed  Google Scholar 

  129. Gavett BE, Stern RA, McKee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30(1):179–88.

    PubMed Central  PubMed  Google Scholar 

  130. Gavett BE, Cantu RC, Shenton M, Lin AP, Nowinski CJ, McKee AC, et al. Clinical appraisal of chronic traumatic encephalopathy: current perspectives and future directions. Curr Opin Neurol. 2011;24(6):525–31.

    PubMed  Google Scholar 

  131. Barnes SM, Walter KH, Chard KM. Does a history of mild traumatic brain injury increase suicide risk in veterans with PTSD? Rehabil Psychol. 2012;57(1):18–26.

    PubMed  Google Scholar 

  132. Teasdale TW, Engberg AW. Suicide after traumatic brain injury: a population study. J Neurol Neurosurg Psychiatry. 2001;71(4):436–40.

    CAS  PubMed  Google Scholar 

  133. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    CAS  PubMed  Google Scholar 

  134. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.

    CAS  PubMed  Google Scholar 

  136. Mangia S, Tkac I, Gruetter R, Van de Moortele PF, Maraviglia B, Ugurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab. 2007;27(5):1055–63.

    CAS  PubMed  Google Scholar 

  137. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA. 1986;83(4):1140–4.

    CAS  PubMed  Google Scholar 

  138. Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. Neuroimage. 2004;23(1):S220–33.

    PubMed  Google Scholar 

  139. Shen Q, Ren H, Duong TQ. CBF, BOLD, CBV, and CMRO(2) fMRI signal temporal dynamics at 500-msec resolution. J Magn Reson Imaging. 2008;27(3):599–606.

    PubMed Central  PubMed  Google Scholar 

  140. Cohen M. Parametric analysis of fMRI data using linear systems methods. Neuroimage. 1997;6(2):93–103.

    CAS  PubMed  Google Scholar 

  141. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998;39(6):855–64.

    CAS  PubMed  Google Scholar 

  142. Lu H, Golay X, Pekar JJ, van Zijl PC. Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab. 2004;24(7):764–70.

    PubMed  Google Scholar 

  143. Schroeter ML, Kupka T, Mildner T, Uludag K, von Cramon DY. Investigating the post-stimulus undershoot of the BOLD signal—a simultaneous fMRI and fNIRS study. Neuroimage. 2006;30(2):349–58.

    PubMed  Google Scholar 

  144. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci. 1992;12(12):4846–53.

    CAS  PubMed  Google Scholar 

  145. Alwis DS, Yan EB, Morganti-Kossmann MC, Rajan R. Sensory cortex underpinnings of traumatic brain injury deficits. PLoS One. 2012;7(12):e52169.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Henry LC, Tremblay S, Leclerc S, Khiat A, Boulanger Y, Ellemberg D, et al. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol. 2011;11:105.

    PubMed Central  PubMed  Google Scholar 

  147. Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: a 1H magnetic resonance spectroscopy study. J Neurotrauma. 2009;26(10):1635–43.

    PubMed  Google Scholar 

  148. Yeo RA, Gasparovic C, Merideth F, Ruhl D, Doezema D, Mayer AR. A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. J Neurotrauma. 2011;28(1):1–11.

    PubMed  Google Scholar 

  149. Di X, Gordon J, Bullock R. Fluid percussion brain injury exacerbates glutamate-induced focal damage in the rat. J Neurotrauma. 1999;16(3):195–201.

    CAS  PubMed  Google Scholar 

  150. Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem. 1995;65(4):1704–11.

    CAS  PubMed  Google Scholar 

  151. Hartley CE, Varma M, Fischer JP, Riccardi R, Strauss JA, Shah S, et al. Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma. J Neurosurg. 2008;109(4):708–14.

    CAS  PubMed  Google Scholar 

  152. Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, DeKosky ST. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993;61(6):2015–24.

    CAS  PubMed  Google Scholar 

  153. Hillary FG, Biswal B. The influence of neuropathology on the FMRI signal: a measurement of brain or vein? Clin Neuropsychol. 2007;21(1):58–72.

    CAS  PubMed  Google Scholar 

  154. Soustiel JF, Sviri GE. Monitoring of cerebral metabolism: non-ischemic impairment of oxidative metabolism following severe traumatic brain injury. Neurol Res. 2007;29(7):654–60.

    CAS  PubMed  Google Scholar 

  155. Vespa PM, O’Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, et al. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med. 2007;35(4):1153–60.

    PubMed  Google Scholar 

  156. Park E, Bell JD, Siddiq IP, Baker AJ. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(3):575–84.

    CAS  PubMed  Google Scholar 

  157. Ueda Y, Walker SA, Povlishock JT. Perivascular nerve damage in the cerebral circulation following traumatic brain injury. Acta Neuropathol. 2006;112(1):85–94.

    PubMed  Google Scholar 

  158. Bigler ED. Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. J Int Neuropsychol Soc. 2004;10(5):794–806.

    PubMed  Google Scholar 

  159. Heffernan ME, Huang W, Sicard KM, Bratane BT, Zhang N, Fisher M, et al. Multi-modal approach for investigating brain and behavior changes in an animal model of traumatic brain injury. J Neurotrauma. 2013;30(11):1007–12.

    PubMed  Google Scholar 

  160. Pawela CP, Biswal BB, Hudetz AG, Li R, Jones SR, Cho YR, et al. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage. 2010;49(3):2467–78.

    PubMed Central  PubMed  Google Scholar 

  161. Liang Z, King J, Zhang N. Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci. 2011;31(10):3776–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Govind V, Gold S, Kaliannan K, Saigal G, Falcone S, Arheart KL, et al. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. 2010;27(3):483–96.

    PubMed  Google Scholar 

  163. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133(11):3232–42.

    PubMed  Google Scholar 

  164. Matthews SC, Strigo IA, Simmons AN, O’Connell RM, Reinhardt LE, Moseley SA. A multimodal imaging study in U.S. veterans of operations Iraqi and enduring freedom with and without major depression after blast-related concussion. Neuroimage. 2011;54(1):69–75.

    Google Scholar 

  165. Lewine JD, Davis JT, Bugler ED, Thoma R, Hill D, Funke M, et al. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil. 2007;22(3):141–55.

    PubMed  Google Scholar 

  166. Slobounov S, Cao C, Sebastianelli W. Differential effect of first versus second concussive episodes on wavelet information quality of EEG. Clin Neurophysiol. 2009;120(5):862–7.

    PubMed Central  PubMed  Google Scholar 

  167. Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, et al. Where the BOLD signal goes when alpha EEG leaves. Neuroimage. 2006;31(4):1408–18.

    CAS  PubMed  Google Scholar 

  168. Yuan H, Zotev V, Phillips R, Drevets WC, Bodurka J. Spatiotemporal dynamics of the brain at rest—exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. Neuroimage. 2012;60(4):2062–72.

    PubMed  Google Scholar 

  169. Liau J, Liu TT. Inter-subject variability in hypercapnic normalization of the BOLD fMRI response. Neuroimage. 2009;45(2):420–30.

    PubMed Central  PubMed  Google Scholar 

  170. Stefanovic B, Warnking JM, Pike GB. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage. 2004;22(2):771–8.

    PubMed  Google Scholar 

  171. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 1997;10(4–5):197–203.

    CAS  PubMed  Google Scholar 

  172. Thomason ME, Glover GH. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal. Neuroimage. 2008;39(1):206–14.

    PubMed Central  PubMed  Google Scholar 

  173. Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage. 2005;25(3):850–8.

    PubMed Central  PubMed  Google Scholar 

  174. Zappe AC, Uludag K, Oeltermann A, Ugurbil K, Logothetis NK. The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex. 2008;18(11):2666–73.

    CAS  PubMed  Google Scholar 

  175. Biswal BB, Kannurpatti SS, Rypma B. Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor. Magn Reson Imaging. 2007;25(10):1358–69.

    PubMed Central  PubMed  Google Scholar 

  176. Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Ugurbil K, et al. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. Neuroimage. 2004;23(2):613–24.

    PubMed  Google Scholar 

  177. Thomason ME, Foland LC, Glover GH. Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum Brain Mapp. 2007;28(1):59–68.

    PubMed  Google Scholar 

  178. Palmer HS, Garzon B, Xu J, Berntsen EM, Skandsen T, Haberg AK. Reduced fractional anisotropy does not change the shape of the hemodynamic response in survivors of severe traumatic brain injury. J Neurotrauma. 2010;27(5):853–62.

    PubMed  Google Scholar 

  179. McAllister TW, Stein MB. Effects of psychological and biomechanical trauma on brain and behavior. Ann N Y Acad Sci. 2010;1208:46–57.

    PubMed Central  PubMed  Google Scholar 

  180. Kim N, Branch CA, Kim M, Lipton ML. Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS One. 2013;8(3):e59382.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Ling JM, Pena A, Yeo RA, Merideth FL, Klimaj S, Gasparovic C, et al. Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective. Brain. 2012;135(4):1281–92.

    PubMed  Google Scholar 

  182. Lipton ML, Kim N, Park YK, Hulkower MB, Gardin TM, Shifteh K, et al. Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging Behav. 2012;6(2):329–42.

    PubMed  Google Scholar 

  183. Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. 2012;59(3):2017–24.

    PubMed  Google Scholar 

  184. Jorge RE, Acion L, White T, Tordesillas-Gutierrez D, Pierson R, Crespo-Facorro B, et al. White matter abnormalities in veterans with mild traumatic brain injury. Am J Psychiatry. 2012;169(12):1284–91.

    PubMed  Google Scholar 

  185. Mayer AR, Ling JM, Yang Z, Pena A, Yeo RA, Klimaj S. Diffusion abnormalities in pediatric mild traumatic brain injury. J Neurosci. 2012;32(50):17961–9.

    CAS  PubMed  Google Scholar 

  186. Bazarian JJ, Zhu T, Blyth B, Borrino A, Zhong J. Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn Reson Imaging. 2012;30(2):171–80.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Mayer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayer, A.R., Bellgowan, P.S.F. (2014). Functional Magnetic Resonance Imaging in Mild Traumatic Brain Injury. In: Slobounov, S., Sebastianelli, W. (eds) Concussions in Athletics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0295-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0295-8_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0294-1

  • Online ISBN: 978-1-4939-0295-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics