Skip to main content
Log in

Prepulse inhibition of the startle reflex and response to antipsychotic treatments in two outbred mouse strains in comparison to the inbred DBA/2 mouse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Naturally low prepulse inhibition (PPI) in DBA/2 mice is increased by marketed antipsychotics and compounds acting at novel targets relevant to schizophrenia. Whether other mouse strains with naturally low PPI respond similarly and could be translational models of schizophrenia is unknown.

Objective

Baseline levels of PPI were determined in outbred CF-1 and Black Swiss mice. CF-1 and Black Swiss mice were then compared to DBA/2 mice for their responses to typical (haloperidol) and atypical (clozapine) antipsychotics and to compounds with potential antipsychotic activity, a histamine H3 receptor antagonist (thioperamide) and a glycine transporter-1 inhibitor (SSR504734).

Results

CF-1 and Black Swiss mice had naturally low PPI, similar to the level in C57BL/6 mice, but higher than that in DBA/2 mice. Haloperidol (0.3–1 mg/kg) increased PPI in DBA/2, CF-1, and Black Swiss mice. Clozapine (3 mg/kg) increased PPI in DBA/2 and CF-1 mice, but not in Black Swiss mice. Thioperamide (10–30 mg/kg) and SSR504734 (30 mg/kg) increased PPI only in DBA/2 mice. Strain differences in PPI responsiveness were not due to differences in brain concentrations of the tested compounds.

Conclusions

CF-1 mice with naturally low PPI may be useful for testing typical and atypical antipsychotics while Black Swiss mice only responded to a typical antipsychotic. DBA/2 mice remain the only strain with naturally low PPI that responds to marketed antipsychotics, as well as to compounds with novel mechanisms of action. Thus, DBA/2 mice may be the strain of choice for screening novel chemical entities for their ability to increase PPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Belknap JK, Riggan J, Cross S, Young ER, Gallaher EJ, Crabbe JC (1998) Genetic determinants of morphine activity and thermal responses in 15 inbred mouse strains. Pharmacol Biochem Behav 59:353–360

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Frau R, Orrù M, Piras AP, Fà M, Tuveri A, Puligheddu M, Gessa GL, Castelli MP, Mereu G, Marrosu F (2007) Activation of GABAB receptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology 194:361–369

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, Stemmelin J, Coste A, Lanneau C, Desvignes C, Cohen C, Alonso R, Vigé X, Biton B, Steinberg R, Sevrin M, Oury-Donat F, George P, Bergis O, Griebel G, Avenet P, Scatton B (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav 91:47–58

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  • Browman KE, Komater VA, Curzon P, Rueter LE, Hancock AA, Decker MW, Fox GB (2004) Enhancement of prepulse inhibition of startle in mice by the H3 receptor antagonists thioperamide and ciproxifan. Behav Brain Res 153:69–76

    Article  PubMed  CAS  Google Scholar 

  • Burban A, Sadakhom C, Dumoulin D, Rose C, Le Pen G, Frances H, Arrang J-M (2010) Modulation of prepulse inhibition and stereotypies in rodents: no evidence for antipsychotic-like properties of histamine H3-receptor inverse agonists. Psychopharmacology 210:591–604

    Article  PubMed  CAS  Google Scholar 

  • Curzon P, Decker MW (1998) Effects of phencyclidine (PCP) and (+)MK-801 on sensorimotor gating in CD-1 mice. Prog Neuropsychopharmacol Biol Psychiatry 22:129–146

    Article  PubMed  CAS  Google Scholar 

  • Dargazanli G, Estenne-Bouhtou G, Magat P, Marabout B, Medaisko F, Roger P, Sevrin M, Veronique C (2003) Derivatives of N-[phenyl(piperidin-2-yl)methyl]benzamide, the preparation method thereof and application of same in therapeutics. World Patent WO2003089411, 2003 30 Oct

  • Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    Article  PubMed  Google Scholar 

  • Donato Di Paola E, Gareri P, Davoli A, Gratteri S, Scicchitano F, Naccari C, De Sarro G (2007) Influence of levetiracetam on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice. Epilepsy Res 75:112–121

    Article  PubMed  CAS  Google Scholar 

  • Drayton M, Noben-Trauth K (2006) Mapping quantitative trait loci for hearing loss in Black Swiss mice. Hear Res 212:128–139

    Article  PubMed  Google Scholar 

  • Erway LC, Willott JF, Archer JR, Harrison DE (1993) Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65:125–133

    Article  PubMed  CAS  Google Scholar 

  • Fejgin K, Safonov S, Pålsson E, Wass C, Engel JA, Svensson L, Klamer D (2007) The atypical antipsychotic, aripiprazole, blocks phencyclidine-induced disruption of prepulse inhibition in mice. Psychopharmacology 191:377–385

    Article  PubMed  CAS  Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Gasior M, Marino MJ (2007) Variables affecting prepulse inhibition of the startle reflex and the response to antipsychotics in DBA/2NCrl mice. Psychopharmacology 195:203–211

    Article  PubMed  CAS  Google Scholar 

  • Flood DG, Choinski M, Marino MJ, Gasior M (2009) Mood stabilizers increase prepulse inhibition in DBA/2NCrl mice. Psychopharmacology 205:369–377

    Article  PubMed  CAS  Google Scholar 

  • Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley MJ, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW, Hancock AA (2005) Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 313:176–190

    Article  PubMed  CAS  Google Scholar 

  • Gardner DM, Baldessarini RJ, Waraich P (2005) Modern antipsychotic drugs: a critical review. CMAJ 172:1703–1711

    PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Molec Psychiatry 7:1039–1053

    Article  CAS  Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23:7586–7591

    PubMed  CAS  Google Scholar 

  • Kopec K, Flood DG, Gasior M, McKenna BA, Zuvich E, Schreiber J, Salvino JM, Durkin JT, Ator MA, Marino MJ (2010) Glycine transporter (GlyT1) inhibitors with reduced residence time increase prepulse inhibition without inducing hyperlocomotion in DBA/2 mice. Biochem Pharmacol 80:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Lane H-Y, Chang Y-C, Liu Y-C, Chiu C-C, Tsai GE (2005) Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia. A randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry 62:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Ligneau X, Landais L, Perrin D, Piriou J, Uguen M, Denis E, Robert P, Parmentier R, Anaclet C, Lin J-S, Burban A, Arrang J-M, Schwartz J-C (2007) Brain histamine and schizophrenia: potential therapeutic applications of H3-receptor inverse agonists studied with BF2.649. Biochem Pharmacol 73:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Lindsley C (2010) GlyT1—up from the ashes. The importance of not condemning a mechanism based on a single chemotype. ACS Chem Neurosci 1:165–166

    Article  CAS  Google Scholar 

  • Lindsley CW, Zhao Z, Leister WH, O’Brien J, Lemaire W, Williams DL Jr, Chen T-B, Chang RSL, Burno M, Jacobson MA, Sur C, Kinney GG, Pettibone DJ, Tiller PR, Smith S, Tsou NN, Duggan ME, Conn PJ, Hartman GD (2006) Design, synthesis, and in vivo efficacy of glycine transporter-1 (GlyT1) inhibitors derived from a series of [4-phenyl-1-(propylsulfonyl)piperidin-4-yl]methyl benzamides. Chem Med Chem 1:807–811

    PubMed  CAS  Google Scholar 

  • Lipina T, Labrie V, Weiner I, Roder J (2005) Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179:54–67

    Article  PubMed  CAS  Google Scholar 

  • Marquis KL, Sabb AL, Logue SF, Brennan JA, Piesla MJ, Comery TA, Grauer SM, Ashby CR Jr, Nguyen HQ, Dawson LA, Barrett JE, Stack G, Meltzer HY, Harrison BL, Rosenzweig-Lipson S (2007) WAY-163909 [(7bR, 10aR)-1, 2, 3, 4, 8, 9, 10, 10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]: a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496

    Article  PubMed  CAS  Google Scholar 

  • McCaughran J Jr, Mahjubi E, Decena E, Hitzemann R (1997) Genetics, haloperidol-induced catalepsy and haloperidol-induced changes in acoustic startle and prepulse inhibition. Psychopharmacology 134:131–139

    Article  PubMed  CAS  Google Scholar 

  • Misawa H, Sherr EH, Lee DJ, Chetkovich DM, Tan A, Schreiner CE, Bredt DS (2002) Identification of a monogenic locus (jams1) causing juvenile audiogenic seizures in mice. J Neurosci 22:10088–10093

    PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Gagnon PM (2004) Cellular correlates of progressive hearing loss in 129S6/SvEv mice. J Comp Neurol 469:377–390

    Article  PubMed  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal A-M, Jenck F, Moreau J-L (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology 156:273–283

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal A-M, Reiss D, Romand R (2006) Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background. Behav Brain Res 172:307–315

    Article  PubMed  Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 132:169–180

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Minassian A, Feifel D, Braff DL (2001) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61:482–486

    Article  PubMed  Google Scholar 

  • Pinard E, Alanine A, Alberati D, Bender M, Borroni E, Bourdeaux P, Brom V, Burner S, Fischer H, Hainzl D, Halm R, Hauser N, Jolidon S, Lengyel J, Marty H-P, Meyer T, Moreau J-L, Mory R, Narquizian R, Nettekoven M, Norcross RD, Puellmann B, Schmid P, Schmitt S, Stalder H, Wermuth R, Wettstein JG, Zimmerli D (2010) Selective GlyT1 inhibitors: discovery of [4-(3-fluro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl]-[5-methanesulfonyl-2-((S)-2, 2, 2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J Med Chem 53:4603–4614

    Article  PubMed  CAS  Google Scholar 

  • Ralph RJ, Caine SB (2007) Effects of selective dopamine D1-like and D2-like agonists on prepulse inhibition of startle in inbred C3H/H3J, SPRET/EiJ, and CAST/EiJ mice. Psychopharmacology 191:731–739

    Article  PubMed  CAS  Google Scholar 

  • Risinger FO, Cunningham CL (2000) DBA/2J mice develop stronger lithium chloride-induced conditioned taste and place aversions than C57BL/6J mice. Pharmacol Biochem Behav 67:17–24

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    Article  PubMed  CAS  Google Scholar 

  • Schreiber R, Dalmus M, De Vry J (2002) Effects of α4/β2- and α7-nicotine acetylcholine receptor agonists on prepulse inhibition of the acoustic startle response in rats and mice. Psychopharmacology 159:248–257

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009) Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology 206:677–698

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 199:331–388

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Lane H-Y, Yang P, Chong M-Y, Lange N (2004) Glycine transporter 1 inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 55:452–456

    Article  PubMed  CAS  Google Scholar 

  • Willott JF, Tanner L, O’Steen J, Johnson KR, Bogue MA, Gagnon L (2003) Acoustic startle and prepulse inhibition in 40 inbred strains of mice. Behav Neurosci 117:716–727

    Article  PubMed  Google Scholar 

  • Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130:94–107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Lisa Aimone, Kelli Zeigler, and Rebecca Brown for performing the bioanalytical studies. Cephalon, Inc. employed the authors and sponsored this research. The experiments described in this manuscript comply with the current laws of the United States, the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy G. Flood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flood, D.G., Zuvich, E., Marino, M.J. et al. Prepulse inhibition of the startle reflex and response to antipsychotic treatments in two outbred mouse strains in comparison to the inbred DBA/2 mouse. Psychopharmacology 215, 441–454 (2011). https://doi.org/10.1007/s00213-011-2196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2196-5

Keywords

Navigation