Skip to main content
Log in

The effects of d-amphetamine, methylphenidate, sydnocarb, and caffeine on prepulse inhibition of the startle reflex in DBA/2 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine (DA) agonists decrease prepulse inhibition (PPI) and are widely used in translational models for the sensorimotor gating deficits in schizophrenia. Reductions in PPI induced by DA agonists are routinely reversed by antipsychotics in these translational models. Nevertheless, under conditions of low-baseline PPI, DA agonists may increase PPI in humans and experimental animals. DBA/2 mice have naturally low-baseline PPI, which as in the drug-induced translational models, is increased by antipsychotics.

Objective

Determine whether DBA/2 mice respond like other models of low-baseline PPI by evaluating the effect of psychostimulants (caffeine, 30–100 mg/kg IP) and the indirect DA agonists d-amphetamine (0.3–10 mg/kg IP), methylphenidate (10–100 mg/kg IP), and sydnocarb (10–30 mg/kg IP), a selective DA transporter inhibitor on PPI. Furthermore, baseline PPI in DBA/2 mice was increased by noise exposure and the effect of d-amphetamine was assessed.

Results

PPI was increased at one dose for each of the psychostimulants when baseline PPI was low in naïve DBA/2 mice. Effective doses were 3 mg/kg of d-amphetamine, 30 mg/kg of methylphenidate, 30 mg/kg of sydnocarb, and 100 mg/kg of caffeine. Higher doses of d-amphetamine (10 mg/kg) and methylphenidate (100 mg/kg IP) decreased PPI. When the baseline PPI was increased by noise exposure, 10 mg/kg of d-amphetamine only reduced PPI.

Conclusion

Lower doses of psychostimulants increased PPI in naïve DBA/2 mice in a manner consistent with their naturally low-baseline PPI, and higher doses decreased PPI, consistent with effects observed in most mouse strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakshi VP, Geyer MA, Taaid N, Swerdlow NR (1995) A comparison of the effects of amphetamine, strychnine and caffeine on prepulse inhibition and latent inhibition. Behav Pharmacol 6:801–809

    Article  CAS  PubMed  Google Scholar 

  • Bitsios P, Giakoumaki SG, Frangou S (2005) The effects of dopamine agonists on prepulse inhibition in healthy men depend on baseline PPI values. Psychopharmacology 182:144–152

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  CAS  PubMed  Google Scholar 

  • De Sarro G, De Sarro A, Di Paola ED, Bertorelli R (1999) Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice. Eur J Pharmacol 371:137–145

    Article  PubMed  Google Scholar 

  • Drolet G, Proulx K, Pearson D, Rochford J, Deschepper CF (2002) Comparisons of behavioral and neurochemical characteristics between WKY, WKHA, and Wistar rat strains. Neuropsychopharmacology 27:400–409

    Article  CAS  PubMed  Google Scholar 

  • Flood DG, Gasior M, Marino MJ (2007) Variables affecting prepulse inhibition of the startle reflex and the response to antipsychotics in DBA/2NCrl mice. Psychopharmacology 195:203–211

    Article  CAS  PubMed  Google Scholar 

  • Flood DG, Choinski M, Marino MJ, Gasior M (2009) Mood stabilizers increase prepulse inhibition in DBA/2NCrl mice. Psychopharmacology 205:369–377

    Article  CAS  PubMed  Google Scholar 

  • Garrett BE, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav 57:533–541

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Molec Psychiatry 7:1039–1053

    Article  CAS  Google Scholar 

  • Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 331:574–590

    Article  CAS  PubMed  Google Scholar 

  • Gruner JA, Flood DG, Mathiasen JR, Aimone LD, Marino MJ, Gasior M (2008) Biochemical, pharmacological, and behavioral characterization of the dopaminergic stimulant sydnocarb in rats. Neurosci Abstr 34:285.11

    Google Scholar 

  • Halene TB, Siegel SJ (2008) Antipsychotic-like properties of phosphodiesterase 4 inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) with auditory event-related potentials and prepulse inhibition of startle. J Pharmacol Exp Ther 326:230–239

    Article  CAS  PubMed  Google Scholar 

  • Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP (2007) Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 144:239–246

    Article  CAS  PubMed  Google Scholar 

  • Kelly MP, Isiegas C, Cheung Y-F, Tokarczyk J, Yang X, Esposito MF, Rapoport DA, Fabian SA, Siegel SJ, Wand G, Houslay MD, Kanes SJ, Abel T (2007) Constitutive activation of Gαs within forebrain neurons causes deficits in sensorimotor gating because of PKA-dependent decreases in cAMP. Neuropsychopharmacology 32:577–588

    Article  CAS  PubMed  Google Scholar 

  • Kinney GG, Wilkinson LO, Saywell KL, Tricklebank MD (1999) Rat strain differences in the ability to disrupt sensorimotor gating are limited to the dopaminergic system, specific to prepulse inhibition, and unrelated to changes in startle amplitude or nucleus accumbens dopamine receptor sensitivity. J Neurosci 19:5644–5653

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–2037

    CAS  PubMed  Google Scholar 

  • McCaughran J Jr, Mahjubi E, Decena E, Hitzemann R (1997) Genetics, haloperidol-induced catalepsy and haloperidol-induced changes in acoustic startle and prepulse inhibition. Psychopharmacology 134:131–139

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Article  CAS  PubMed  Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 132:169–180

    Article  CAS  PubMed  Google Scholar 

  • Perry W, Minassian A, Feifel D, Braff DL (2001) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424

    Article  CAS  PubMed  Google Scholar 

  • Plappert CF, Kuhn S, Schnitzler H-U, Pilz PKD (2006) Experience increases the prepulse inhibition of the acoustic startle response in mice. Behav Neurosci 120:16–23

    Article  PubMed  Google Scholar 

  • Puglisi-Allegra S, Cabib S (1997) Psychopharmacology of dopamine: the contribution of comparative studies in inbred strains of mice. Prog Neurobiol 51:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ralph RJ, Caine SB (2005) Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague–Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. J Pharmacol Exp Ther 312:733–741

    Article  CAS  PubMed  Google Scholar 

  • Ralph RJ, Caine SB (2007) Effects of selective dopamine D1-like and D2-like agonists on prepulse inhibition of startle in inbred C3H/HeJ, SPRET/EiJ, and CAST/EiJ mice. Psychopharmacology 191:731–739

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Sahakian BJ (1979) “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18:931–950

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, Proulx-LaFrance C, Majchrzak MJ, Ramirez AD, Schmidt K, Seymour PA, Siuciak JA, Tingley FD III, Williams RD, Verhoest PR, Menniti FS (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690

    Article  CAS  PubMed  Google Scholar 

  • Singer P, Feldon J, Yee BK (2009) Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology 206:677–698

    Article  CAS  PubMed  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94:127–152

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Eastvold A, Gerbranda T, Uyan KM, Hartman P, Doan Q, Auerbach P (2000) Effects of caffeine on sensorimotor gating of the startle reflex in normal control subjects: impact of caffeine intake and withdrawal. Psychopharmacology 151:368–378

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Eastvold A, Karban B, Ploum Y, Stephany N, Geyer MA, Cadenhead K, Auerbach P (2002a) Dopamine agonist effects on startle and sensorimotor gating in normal male subjects: time course studies. Psychopharmacology 161:189–201

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Stephany N, Shoemaker JM, Ross L, Wasserman LC, Talledo J, Auerbach PP (2002b) Effects of amantadine and bromocriptine on startle and sensorimotor gating: parametric studies and cross-species comparisons. Psychopharmacology 164:82–92

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Talledo J, Sutherland AN, Nagy D, Shoemaker JM (2006) Antipsychotic effects on prepulse inhibition in normal ‘low gating’ humans and rats. Neuropsychopharmacology 31:2011–2021

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2007) Strain differences in the disruption of prepulse inhibition of startle after systemic and intra-accumbens amphetamine administration. Pharmacol Biochem Behav 87:1–10

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 199:331–388

    Article  CAS  PubMed  Google Scholar 

  • Talledo JA, Owens ANS, Schortinghuis T, Swerdlow NR (2009) Amphetamine effects on startle gating in normal women and female rats. Psychopharmacology 204:165–175

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Willott JF (1998) Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice. Hearing Res 118:101–113

    Article  CAS  Google Scholar 

  • Varty GB, Walters N, Cohen-Williams M, Carey GJ (2001) Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. Eur J Pharmacol 424:27–36

    Article  CAS  PubMed  Google Scholar 

  • Ventura R, Alcaro A, Cabib S, Conversi D, Mandolesi L, Puglisi-Allegra S (2004) Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Neuropsychopharmacology 29:72–80

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Barro M, Csomor PA, Feldon J (2006) Clozapine enhances prepulse inhibition in healthy humans with low but not with high prepulse inhibition levels. Biol Psychiatry 60:597–603

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR (2009) Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology 203:723–735

    Article  CAS  PubMed  Google Scholar 

  • Witkin JM, Savtchenko N, Mashkovsky M, Beekman M, Munzar P, Gasior M, Goldberg SR, Ungard JT, Kim J, Shippenberg T, Chefer V (1999) Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. J Pharmacol Exp Ther 288:1298–1310

    CAS  PubMed  Google Scholar 

  • Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M (1999) Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 46:832–838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Cephalon, Inc. employs the authors and sponsored this research. Cephalon, Inc. has no proprietary interest in the drugs used in these studies. The experiments described in this manuscript comply with the current laws of the United States, the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy G. Flood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flood, D.G., Zuvich, E., Marino, M.J. et al. The effects of d-amphetamine, methylphenidate, sydnocarb, and caffeine on prepulse inhibition of the startle reflex in DBA/2 mice. Psychopharmacology 211, 325–336 (2010). https://doi.org/10.1007/s00213-010-1901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1901-0

Keywords

Navigation