Skip to main content

Advertisement

Log in

Chronic treatment with the selective NOP receptor antagonist [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The present study was designed to assess the antidepressant effects of UFP-101, a selective nociceptin/orphanin FQ peptide (NOP) receptor antagonist, in a validated animal model of depression: the chronic mild stress (CMS).

Materials and methods and Results

UFP-101 (5, 10 and 20 nmol/rat; i.c.v., once a day for 21 days) dose- and time-dependently reinstated sucrose consumption in stressed animals without affecting the same parameter in non-stressed ones. In the forced swimming test, UFP-101 reduced immobility of stressed rats from day 8 of treatment. After a 3-week treatment, rats were killed for biochemical evaluations. UFP-101 abolished increase in serum corticosterone induced by CMS and reverted changes in central 5-HT/5-HIAA ratio. The behavioural and biochemical effects of UFP-101 mimicked those of imipramine, the reference antidepressant drug, administered at the dose of 15 mg/kg (i.p.). Co-administration of nociceptin/orphanin FQ (5 nmol/rat, from day 12 to 21) prevented the effects of UFP-101. Brain-derived neurotrophic factor mRNA and protein in hippocampus were not reduced by CMS nor did UFP-101 modify these parameters.

Discussion and Conclusion

This study demonstrated that chronic treatment with UFP-101 produces antidepressant-like effects in rats subjected to CMS supporting the proposal that NOP receptors represent a candidate target for the development of innovative antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akana SF, Cascio CS, Du JZ, Levin N, Dallman MF (1986) Reset of feedback in the adrenocortical system: an apparent shift in sensitivity of adrenocorticotrpin to inhibition of corticosterone in the morning and evening. Endocrinology 119:2325–2332

    Article  CAS  PubMed  Google Scholar 

  • Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 29:525–546

    Article  PubMed  Google Scholar 

  • Bekris S, Antoniou K, Daskas S, Papadopouolou-Dafoti Z (2005) Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 162:45–59

    Article  Google Scholar 

  • Benelli A, Filaferro M, Bertolini A, Genedani S (1999) Influence of S-adenosyl-l-methionine on chronic mild stress-induced anhedonia in castrated rats. Br J Pharmacol 127:645–654

    Article  CAS  PubMed  Google Scholar 

  • Calò G, Guerrini R, Rizzi A, Salvatori S, Regoli D (2000) Pharmacology of nociceptin and its receptor—a novel therapeutic target. Br J Pharmacol 129:1261–1283

    Article  PubMed  Google Scholar 

  • Calò G, Rizzi A, Rizzi G, Bigoni R, Guerrini R, Marzola G, Marti M, McDonald J, Morari M, Lambert DG, Salvatori S, Regoli D (2002) [Nphe1, Arg14, Lys15]nociceptin-NH2, a novel, potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol 136:303–311

    Article  PubMed  Google Scholar 

  • Calò G, Guerrini R, Rizzi A, Salvatori S, Burmeister M, Kapusta DR, Lambert DG, Regoli D (2005) UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. CNS Drug Rev 11:97–112

    PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Ciccocioppo R, Economidou D, Fedeli A, Massi M (2003) The nociceptin/orphanin FQ/NOP receptor system as a target for treatment of alcohol abuse: a review of recent work in alcohol-preferring rats. Physiol Behav 79:121–128

    Article  CAS  PubMed  Google Scholar 

  • Commissiong JW (1985) Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol 34:1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-erived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    CAS  PubMed  Google Scholar 

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  • Coppell AL, Pei Q, Zetterström TS (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44:903–910

    Article  CAS  PubMed  Google Scholar 

  • Cox BM, Chavkin C, Christie MJ, Civelli O, Evans C, Hamon MD, Hoellt V, Kieffer B, Kitchen I, McKnight AT, Meunier JC, Portoghese PS (2000) Opioid receptors. In: Girdlestone D (ed) The IUPHAR compendium of receptor characterization and classification. IUPHAR, London, pp 321–333

    Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • D’Aquila PS, Brain P, Willner P (1994) Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiol Behav 56:861–867

    Article  PubMed  Google Scholar 

  • D’Aquila PS, Peana AT, Carboni V, Serra G (2000) Different effects of desipramine on locomotor activity in quinpirole-treated rats after repeated restraint and chronic mild stress. J Psychopharmacol 14:347–352

    Article  PubMed  Google Scholar 

  • Dalla C, Antoniou K, Drossopoulou G, Xagoraris M, Kokras N, Sfikakis A, Papadopoulou-Daifoti Z (2005) Chronic mild stress impact: are females more vulnerable? Neuroscience 135:703–714

    Article  CAS  PubMed  Google Scholar 

  • Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressant in the rat forced swimming test: the effect of water depth. Behav Brain Res 73:43–46

    Article  CAS  PubMed  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995) Active behaviours in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66–72

    Article  CAS  Google Scholar 

  • D’Sa C, Duman RS (2002) Antidepressant and plasticity. Bipolar Disord 4:184–194

    Google Scholar 

  • Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5:11–25

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Camarena E, Rivera NM, Berlanga C, Fernández-Guasti A (2008) Reduction in the latency of action of antidepressants by 17 beta-estradiol in the forced swimming test. Psychopharmacology (Berl) 201:351–360

    Article  CAS  Google Scholar 

  • Gavioli EC, Calò G (2006) Antidepressant- and anxiolytic-like effect of nociceptin/orphanin FQ receptor ligands. Naunyn Schmiedebergs Arch Pharmacol 372:318–330

    Article  Google Scholar 

  • Gavioli EC, Marzola G, Guerrini R, Bertorelli R, Zucchini S, De Lima TC, Rae GA, Salvatori S, Regoli D, Calò G (2003) Blockade of the nociceptin/orphanin FQ-NOP receptor signaling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur J NeuroSci 17:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Gavioli EC, Vaughan CW, Marzola G, Guerrini R, Mitchell VA, Zucchini S, De Lima TCM, Rae GA, Salvadori S, Regoli D, Calò G (2004) Antidepressant-like effects of the nociceptin/orphainin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn Schmiedebergs Arch Pharmacol 369:547–553

    Article  CAS  PubMed  Google Scholar 

  • Grønli J, Murison R, Fiske E, Bjorvatn B, Sorensen E, Portas CM, Ursin R (2005) Effects of chronic mild stress on sexual behaviour, locomotor activity and consumption of sucrose and saccharine solutions. Physiol Behav 84:571–577

    Article  PubMed  Google Scholar 

  • Grønli J, Fiske E, Murison R, Bjorvatn B, Sorensen E, Ursin R, Portas CM (2007) Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behav Brain Res 181:42–51

    Article  PubMed  Google Scholar 

  • Grossi G, Bargossi A, Sprovieri G, Benagozzi V, Pasquale R (1990) Full automation of serotonin determination by column switching and HPLC. Chromatographia 30:61–68

    Article  CAS  Google Scholar 

  • Guerrini R, Calo G, Lambert DG, Carra G, Arduin M, Barnes TA, McDonald J, Rizzi D, Trapella C, Marzola E, Rowbotham DJ, Regoli D, Salvadori S (2005) N- and C-terminal modifications of nociceptin/orphanin FQ generate highly potent NOP receptor ligands. J Med Chem 48:1421–1427

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Garcia AG, Contreras CM (2009) Stressors can affect immobility time and response to imipramine in the rat forced swim test. Pharmacol Biochem Behav 91:542–548

    Article  PubMed  Google Scholar 

  • Häidkind R, Eller M, Harro M, Kask A, Rinken A, Oreland L, Harro J (2003) Effects of partial locus coeruleus denervation and chronic mild stress on behaviour and monoamine neurochemistry in the rat. Eur Neuropsychopharmacol 13:19–28

    Article  PubMed  Google Scholar 

  • Holmes PV (2003) Rodent models of depression: re-examining validity without anthropomorphic inference. Crit Rev Neurobiol 15:143–174

    Article  PubMed  Google Scholar 

  • Ibba M, Kitayama M, Mcdonald J, Calo G, Guerrini R, Farkas J, Toth G, Lambert DG (2008) Binding of the novel radioligand [(3)H]UFP-101 to recombinant human and native rat nociceptin/orphanin FQ receptors. Naunyn Schmiedebergs Arch Pharmacol 378:553–561

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Tokumura M, Abe K (2004) Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats. Eur J Pharmacol 498:135–142

    Article  CAS  PubMed  Google Scholar 

  • Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implication for a model of depression. Neurosci Biobehav Rev 5:247–251

    Article  CAS  PubMed  Google Scholar 

  • Kennet GA, Chaouloff F, Marcou M, Curzon G (1986) Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Res 382:416–421

    Article  Google Scholar 

  • Kim SH, Han J, Seog DH, Chung JY, Kim N, Park YH, Lee SK (2005) Antidepressant effect of Chaihu-Shugan-San extract and its constituents in rat models of depression. Life Sci 76:1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Lambert DG (2008) The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7:694–710

    Article  CAS  PubMed  Google Scholar 

  • Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 20(S3):302–306

    Article  Google Scholar 

  • Lopez-Rubalcava C, Lucki I (2000) Strain difference in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22:191–199

    Article  CAS  PubMed  Google Scholar 

  • Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    Article  CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS, Flugge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540

    CAS  PubMed  Google Scholar 

  • Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54:20–23

    Article  CAS  PubMed  Google Scholar 

  • Mogil JS, Pasternak GW (2001) The molecular and behavioural pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415

    CAS  PubMed  Google Scholar 

  • Mollereau C, Mouledous L (2000) Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides 21:907–917

    Article  CAS  PubMed  Google Scholar 

  • Morley-Fletcher S, Darnaudery M, Mocaer E, Froger N, Lanfumey L, Laviola G, Casolini P, Zuena AR, Marzano L, Hamon M, Maccari S (2004) Chronic treatment with imipramine reverses immobility behaviour, hippocampal corticosteroid receptors and cortical 5-HT1A receptor mRNA in prenatally stressed rats. Neuropharmacology 47:841–847

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, Di Leone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002a) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Gould E, Manji H, Bucan M, Duman RS, Gershenfeld HK, Hen R, Koester S, Lederhendler I, Meaney MJ, Robbins T, Winsky L, Zalcman S (2002b) Preclinical models: status of basic research in depression. Biol Psychiatry 52:503–528

    Article  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    CAS  PubMed  Google Scholar 

  • Nutt DJ (2002) The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 17:S1–S12

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, Orlando

    Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Calo G, Regoli D, Quirion R (2002) Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedebergs Arch Pharmacol 365:164–167

    Article  CAS  PubMed  Google Scholar 

  • Reul JMHM, Stec I, Soder M, Holsbore F (1993) Chronic treatment of rats with the antidepressant amitryptiline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133:312–320

    Article  CAS  PubMed  Google Scholar 

  • Reinscheid RK, Nothacher H, Civelli O (2000) The orphanin FQ/nociceptin gene: structure, tissue distribution of expression and functional implications obtained from knockout mice. Peptides 21:901–906

    Article  CAS  PubMed  Google Scholar 

  • Rizzi A, Gavioli EC, Marzola G, Spagnolo B, Zucchini S, Ciccocioppo R, Trapella C, Regoli D, Calò G (2007) Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(−)-cis-1-methyl-7-[[4-(2, 6-dichlorophenyl)piperidin-1-yl]methyl]-6, 7, 8, 9-tetrahydro-5H-benzocyclohepten-5-ol]: in vivo studies. J Pharmacol Exp Ther 321:968–974

    Article  CAS  PubMed  Google Scholar 

  • Russo-Neustadt AA, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21:679–682

    Article  CAS  PubMed  Google Scholar 

  • Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain derived neurotrophic transcripts in the rat hippocampus. Neuroscience 101:305–312

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Kastner R, Wetmore C, Olson L (1996) Comparative study of brain-derived neurotrophic factor messenger RNA and protein at the cellular level suggests multiple roles in hippocampus, striatum and cortex. Neuroscience 74:161–183

    Article  CAS  PubMed  Google Scholar 

  • Shirayama Y, Chen AC, Nagakawa S, Russell DS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioural models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  • Soblosky JS (1986) Biochemical and behavioural correlates of chronic stress: effects of tricyclic antidepressants. Pharm Biochem Behav 24:1362–1368

    Google Scholar 

  • Song L, Che W, Min-Wei W, Murakami Y, Matsumoto K (2006) Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacol Biochem Behav 83:186–193

    Article  CAS  PubMed  Google Scholar 

  • Spruijt BM, Gispen WH (1984) Behavioral sequences as an easily quantifiable parameter in experimental studies. Physiol Behav 32:707–710

    Article  CAS  PubMed  Google Scholar 

  • Tafet GE, Bernardini R (2003) Psychoneuroendocrinological links between chronic stress and depression. Prog Neuro-Psychopharmacol 27:893–903

    Article  Google Scholar 

  • Tao R, Ma Z, Thakkar MM, McCarley RW, Auerbach SB (2007) Nociceptin/orphanin FQ decreases serotonin efflux in the rat brain but in contrast to a ĸ-opioid has no antagonistic effect on µ-opioid-induced increases in serotonin efflux. Neuroscience 147:106–116

    Article  CAS  PubMed  Google Scholar 

  • Vyas A, Bernal S, Chattarji S (2003) Effect of chronic stress on dendritic arborisation in the central and extended amygdale. Brain Res 965:290–294

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Steven Richardson J, Li XM (2003) Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28:53–62

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Yi LT, Pan Y, Wang X, Li YC, Li JM, Wang CP, Kong LD (2008) Antidepressant-like effects of the mixture of honokiol and magnolol form the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 32:715–725

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidences. II Theoretical approaches. Brain Res 287:225–236

    CAS  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  CAS  PubMed  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534

    Article  CAS  PubMed  Google Scholar 

  • Zahorodna A, Hess G (2006) Imipramine and citalopram reverse corticosterone-induced alterations in the effects of the activation of 5-HT(1A) and 5-HT(2) receptors in rat frontal cortex. J Physiol Pharmacol 57:389–399

    CAS  PubMed  Google Scholar 

  • Zetterström TSC, Pei Q, Ainsworth K, Grahame-Smith DG (1998) Effects of antidepressant treatments on BDNF gene expression in rat brain. B J Pharmacol 123(Proc Suppl):211

    Google Scholar 

Download references

Acknowledgements

Funding for this study was provided the Italian Ministry of University (PRIN 2006 grant to M. Massi). We thank Prof. Elena Righi, expert in biomedical data analysis, for the precious assistance in data re-elaboration and Dr. Cristina Benatti, post-graduate technician in Neuroscience, for her help in SPSS data evaluation and revision. Mr Stefano Malaguti, who technically assisted with the execution of the experiments, and Miss Sonia Pennella, for her contribution in the final part of the organisation of the experiments prior to her degree thesis are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vitale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, G., Ruggieri, V., Filaferro, M. et al. Chronic treatment with the selective NOP receptor antagonist [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacology 207, 173–189 (2009). https://doi.org/10.1007/s00213-009-1646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1646-9

Keywords

Navigation