Skip to main content

Advertisement

Log in

Antipsychotics possessing antidepressive efficacy increase Golf protein in rat striatum

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Recently, second-generation antipsychotics (SGAs) have been widely used in the treatment of mood disorders. However, the mechanisms of the antidepressant effect of SGAs remain unclear. We proposed that Golf protein, a stimulant α-subunit of G protein coupled with the dopamine D1 receptor, might a play the key role in the antidepressive effect of antidepressants. To clarify the relationship between Golf protein and the antidepressive effects of antipsychotics, we examined the effects of chronic treatment with several antipsychotics on the level of Golf protein in the rat striatum.

Materials and methods

Male Wistar rats were treated with one of several antipsychotics for 2 weeks: olanzapine (2, 5, or 10 mg/kg), sulpiride (5, 10, or 50 mg/kg), amisulpride (3, 10, or 20 mg/kg), risperidone (0.2 or 2 mg/kg), haloperidol (0.3 or 3 mg/kg), or clozapine (2 or 10 mg/kg).

Results and discussion

Olanzapine (5 mg/kg), sulpiride (5, or 10 mg/kg), and amisulpride (10 mg/kg) treatments significantly increased the level of Golf protein, but there was no increase with administration of higher doses of these three antipsychotics. Risperidone, haloperidol, and clozapine treatment did not change the level of Golf protein at any dose. In this study, all antipsychotics that have antidepressive effects increased Golf protein. This suggests that an increase in Golf may play an important role in the antidepressive effect of antipsychotics.

Conclusion

We postulate that the increase in Golf protein levels result in an increase the proportion of D1 receptors in the high-affinity state and that augmentation of the dopaminergic system exerts the antidepressant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amore M, Jori MC (2001) Faster response on amisulpride 50 mg versus sertraline 50–100 mg in patients with dysthymia or double depression: a randomized, double-blind, parallel group study. Int Clin Psychopharmacol 16:317–324

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–486

    Article  PubMed  CAS  Google Scholar 

  • Bocchetta A, Bernardi F, Burrai C, Pedditzi M, Del Zompo M (1993) A double-blind study of L-sulpiride versus amitriptyline in lithium-maintained bipolar depressives. Acta Psychiatr Scand 88:434–439

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme N, Esposito E (1998) Involvement of serotonin and dopamine in the mechanism of action of novel antidepressant drugs: a review. J Clin Psychopharmacol 18:447–454

    Article  PubMed  CAS  Google Scholar 

  • Cassano GB, Jori MC (2002) Efficacy and safety of amisulpride 50 mg versus paroxetine 20 mg in major depression: a randomized, double-blind, parallel group study. Int Clin Psychopharmacol 17:27–32

    Article  PubMed  CAS  Google Scholar 

  • Cipriani A, Rendell JM, Geddes JR (2006) Haloperidol alone or in combination for acute mania. Cochrane Database Syst Rev 3:CD004362

    PubMed  CAS  Google Scholar 

  • Corvol JC, Studler JM, Schonn JS, Girault JA, Herve D (2001) Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76:1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Corvol JC, Valjent E, Pascoli V, Robin A, Stipanovich A, Luedtke RR, Belluscio L, Girault JA, Herve D (2007) Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology 32:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Curran MP, Perry CM (2001) Amisulpride: a review of its use in the management of schizophrenia. Drugs 61:2123–2150

    Article  PubMed  CAS  Google Scholar 

  • D’Aquila PS, Collu M, Pani L, Gessa GL, Serra G (1994) Antidepressant-like effect of selective dopamine D1 receptor agonists in the behavioural despair animal model of depression. Eur J Pharmacol 262:107–111

    Article  PubMed  CAS  Google Scholar 

  • D’Aquila PS, Collu M, Gessa GL, Serra G (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405:365–373

    Article  PubMed  CAS  Google Scholar 

  • Dailly E, Chenu F, Renard CE, Bourin M (2004) Dopamine, depression and antidepressants. Fundam Clin Pharmacol 18:601–607

    Article  PubMed  CAS  Google Scholar 

  • DeBattista C, Lembke A (2005) Update on augmentation of antidepressant response in resistant depression. Curr Psychiatry Rep 7:435–440

    Article  PubMed  Google Scholar 

  • Durlach-Misteli C, Van Ree JM (1992) Dopamine and melatonin in the nucleus accumbens may be implicated in the mode of action of antidepressant drugs. Eur J Pharmacol 217:15–21

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC, Phillips AG (1988) Mesocorticolimbic dopamine systems and reward. Ann NY Acad Sci 537:206–215

    Article  PubMed  CAS  Google Scholar 

  • Gao K, Calabrese JR (2005) Newer treatment studies for bipolar depression. Bipolar Disord 7(Suppl 5):13–23

    Article  PubMed  CAS  Google Scholar 

  • Gao K, Gajwani P, Elhaj O, Calabrese JR (2005) Typical and atypical antipsychotics in bipolar depression. J Clin Psychiatry 66:1376–1385

    PubMed  CAS  Google Scholar 

  • Gitlin M (2006) Treatment-resistant bipolar disorder. Mol Psychiatry 11:227–240

    Article  PubMed  CAS  Google Scholar 

  • Herve D, Levi-Strauss M, Marey-Semper I, Verney C, Tassin JP, Glowinski J, Girault JA (1993) G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. J Neurosci 13:2237–2248

    PubMed  CAS  Google Scholar 

  • Keck PE Jr (2005) The role of second-generation antipsychotic monotherapy in the rapid control of acute bipolar mania. J Clin Psychiatry 66(Suppl 3):5–11

    PubMed  CAS  Google Scholar 

  • Keck PE Jr, McElroy SL, Strakowski SM, Soutullo CA (2000) Antipsychotics in the treatment of mood disorders and risk of tardive dyskinesia. J Clin Psychiatry 61(Suppl 4):33–38

    PubMed  Google Scholar 

  • Keck PE Jr, Corya SA, Altshuler LL, Ketter TA, McElroy SL, Case M, Briggs SD, Tohen M (2005) Analyses of treatment-emergent mania with olanzapine/fluoxetine combination in the treatment of bipolar depression. J Clin Psychiatry 66:611–616

    PubMed  CAS  Google Scholar 

  • Konig F, von Hippel C, Petersdorff T, Neuhoffer-Weiss M, Wolfersdorf M, Kaschka WP (2001) First experiences in combination therapy using olanzapine with SSRIs (citalopram, paroxetine) in delusional depression. Neuropsychobiology 43:170–174

    Article  PubMed  CAS  Google Scholar 

  • Lecrubier Y, Boyer P, Turjanski S, Rein W (1997) Amisulpride versus imipramine and placebo in dysthymia and major depression. Amisulpride Study Group. J Affect Disord 43:95–103

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud RA, Pandina GJ, Turkoz I, Kosik-Gonzalez C, Canuso CM, Kujawa MJ, Gharabawi-Garibaldi GM (2007) Risperidone for treatment-refractory major depressive disorder: a randomized trial. Ann Intern Med 147:593–602

    PubMed  Google Scholar 

  • Maier W, Benkert O (1994) Treatment of chronic depression with sulpiride: evidence of efficacy in placebo-controlled single case studies. Psychopharmacology (Berl) 115:495–501

    Article  CAS  Google Scholar 

  • Maj J, Rogoz Z, Skuza G, Sowinska H (1984) Repeated treatment with antidepressant drugs increases the behavioural response to apomorphine. J Neural Transm 60:273–282

    Article  PubMed  CAS  Google Scholar 

  • Mann JJ (2005) The medical management of depression. N Engl J Med 353:1819–1834

    Article  PubMed  CAS  Google Scholar 

  • Moller HJ (2005) Antidepressive effects of traditional and second generation antipsychotics: a review of the clinical data. Eur Arch Psychiatry Clin Neurosci 255:83–93

    Article  PubMed  Google Scholar 

  • Montgomery SA (2002) Dopaminergic deficit and the role of amisulpride in the treatment of mood disorders. Int Clin Psychopharmacol 17(Suppl 4):S9–S15 (discussion S16–S17)

    PubMed  Google Scholar 

  • Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206

    Article  PubMed  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology (Berl) 53:309–314

    Article  CAS  Google Scholar 

  • Ravizza L (1999) Amisulpride in medium-term treatment of dysthymia: a six-month, double-blind safety study versus amitriptyline. AMILONG investigators. J Psychopharmacol 13:248–254

    PubMed  CAS  Google Scholar 

  • Rendell JM, Geddes JR (2006) Risperidone in long-term treat-ment for bipolar disorder. Cochrane Database Syst Rev 4:CD004999

    PubMed  Google Scholar 

  • Richfield EK, Penney JB, Young AB (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–777

    Article  PubMed  CAS  Google Scholar 

  • Ruther E, Degner D, Munzel U, Brunner E, Lenhard G, Biehl J, Vogtle-Junkert U (1999) Antidepressant action of sulpiride. Results of a placebo-controlled double-blind trial. Pharmacopsychiatry 32:127–135

    Article  PubMed  CAS  Google Scholar 

  • Serra G, Collu M, D’Aquila P, Pani L, Gessa GL (1988) Are D1 dopamine receptor agonists potential antidepressants? Pharmacol Res Commun 20:1121–1122

    Article  PubMed  CAS  Google Scholar 

  • Serra G, Forgione A, D’Aquila PS, Collu M, Fratta W, Gessa GL (1990) Possible mechanism of antidepressant effect of L-sulpiride. Clin Neuropharmacol 13(Suppl 1):S76–S83

    PubMed  Google Scholar 

  • Shin CJ, Kim YS, Park JB, Juhnn YS (1995) Changes in G protein levels in the hippocampus and the striatum of rat brain after chronic treatment with haloperidol and sulpiride. Neuropharmacology 34:1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Smeraldi E (1998) Amisulpride versus fluoxetine in patients with dysthymia or major depression in partial remission: a double-blind, comparative study. J Affect Disord 48:47–56

    Article  PubMed  CAS  Google Scholar 

  • Spiker DG, Weiss JC, Dealy RS, Griffin SJ, Hanin I, Neil JF, Perel JM, Rossi AJ, Soloff PH (1985) The pharmacological treatment of delusional depression. Am J Psychiatr 142:430–436

    PubMed  CAS  Google Scholar 

  • Standish-Barry HM, Bouras N, Bridges PK, Watson JP (1983) A randomized double blind group comparative study of sulpiride and amitriptyline in affective disorder. Psychopharmacology (Berl) 81:258–260

    Article  CAS  Google Scholar 

  • Taoka H, Hamamura T, Endo S, Miki M, Lee Y, Miyata S, Toma K, Ishihara T, Sagara H, Gomita Y, Kuroda S (2006) G(olf) protein levels in rat striatum are increased by chronic antidepressant administration and decreased by olfactory bulbectomy. Life Sci 79:462–468

    Article  PubMed  CAS  Google Scholar 

  • Tarazi FI, Zhang K, Baldessarini RJ (2002) Long-term effects of olanzapine, risperidone, and quetiapine on serotonin 1A, 2A and 2C receptors in rat forebrain regions. Psychopharmacology (Berl) 161:263–270

    Article  CAS  Google Scholar 

  • Tauscher J, Hussain T, Agid O, Verhoeff NP, Wilson AA, Houle S, Remington G, Zipursky RB, Kapur S (2004) Equivalent occupancy of dopamine D1 and D2 receptors with clozapine: differentiation from other atypical antipsychotics. Am J Psychiatr 161:1620–1625

    Article  PubMed  Google Scholar 

  • Tohen M, Vieta E, Calabrese J, Ketter TA, Sachs G, Bowden C, Mitchell PB, Centorrino F, Risser R, Baker RW, Evans AR, Beymer K, Dube S, Tollefson GD, Breier A (2003) Efficacy of olanzapine and olanzapine-fluoxetine combination in the treatment of bipolar I depression. Arch Gen Psychiatry 60:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Vieta E, Ros S, Goikolea JM, Benabarre A, Popova E, Comes M, Capapey J, Sanchez-Moreno J (2005) An open-label study of amisulpride in the treatment of mania. J Clin Psychiatry 66:575–578

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. II. Theoretical approaches. Brain Res 287:225–236

    PubMed  CAS  Google Scholar 

  • Yatham LN, Goldstein JM, Vieta E, Bowden CL, Grunze H, Post RM, Suppes T, Calabrese JR (2005) Atypical antipsychotics in bipolar depression: potential mechanisms of action. J Clin Psychiatry 66(Suppl 5):40–48

    PubMed  CAS  Google Scholar 

  • Zhuang X, Belluscio L, Hen R (2000) G(olf)alpha mediates dopamine D1 receptor signaling. J Neurosci 20:RC91

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Zikei Institute of Psychiatry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hamamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taoka, H., Hamamura, T., Endo, S. et al. Antipsychotics possessing antidepressive efficacy increase Golf protein in rat striatum. Psychopharmacology 201, 229–235 (2008). https://doi.org/10.1007/s00213-008-1264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1264-y

Keywords

Navigation