Skip to main content
Log in

Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cognitive deficits, including memory impairment, are regarded as a core feature of schizophrenia. Aripiprazole, an atypical antipsychotic drug, has been shown to improve disruption of prepulse inhibition and social interaction in an animal model of schizophrenia induced by phencyclidine (PCP); however, the effects of aripiprazole on recognition memory remain to be investigated.

Objectives

In this study, we examined the effect of aripiprazole on cognitive impairment in mice treated with PCP repeatedly.

Materials and methods

Mice were repeatedly administered PCP at a dose of 10mg/kg for 14days, and their cognitive function was assessed using a novel-object recognition task. We investigated the therapeutic effects of aripiprazole (0.01–1.0mg/kg) and haloperidol (0.3 and 1.0mg/kg) on cognitive impairment in mice treated with PCP repeatedly.

Results

Single (1.0mg/kg) and repeated (0.03 and 0.1mg/kg, for 7days) treatment with aripiprazole ameliorated PCP-induced impairment of recognition memory, although single treatment significantly decreased the total exploration time during the training session. In contrast, both single and repeated treatment with haloperidol (0.3 and 1.0mg/kg) failed to attenuate PCP-induced cognitive impairment. The ameliorating effect of aripiprazole on recognition memory in PCP-treated mice was blocked by co-treatment with a dopamine D1 receptor antagonist, SCH23390, and a serotonin 5-HT1A receptor antagonist, WAY100635; however, co-treatment with a D2 receptor antagonist raclopride had no effect on the ameliorating effect of aripiprazole.

Conclusions

These results suggest that the ameliorative effect of aripiprazole on PCP-induced memory impairment is associated with dopamine D1 and serotonin 5-HT1A receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci 22:425–444

    PubMed  CAS  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    PubMed  CAS  Google Scholar 

  • Bantick RA, Deakin JF, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics. J Psychopharmacol 15:37–46

    Article  PubMed  CAS  Google Scholar 

  • Bortolozzi A, Díaz-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology 191:745–758

    Article  PubMed  CAS  Google Scholar 

  • Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D2 antagonist/5-HT1A agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006

    Article  PubMed  CAS  Google Scholar 

  • Burnet PW, Eastwood SL, Harrison PJ (1996) 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 15:442–455

    Article  PubMed  CAS  Google Scholar 

  • Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • DeLeon A, Patel NC, Crismon ML (2004) Aripiprazole: a comprehensive review of its pharmacology, clinical efficacy, and tolerability. Clin Ther 26:649–666

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996a) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996b) Primate analogue of the Wisconsin card sorting test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25:10831–10843

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T, Noda Y, Mouri A, Shin EJ, Wang D, Murai R, Hotta K, Furukawa H, Nitta A, Kim HC, Nabeshima T (2005) Long-lasting impairment of associative learning is correlated with a dysfunction of N-methyl-d-aspartate-extracellular signaling-regulated kinase signaling in mice after withdrawal from repeated administration of phencyclidine. Mol Pharmacol 68:1765–1774

    PubMed  CAS  Google Scholar 

  • Fejgin K, Safonov S, Pålsson E, Wass C, Engel JA, Svensson L, Klamer D (2007) The atypical antipsychotic, aripiprazole, blocks phencyclidine-induced disruption of prepulse inhibition in mice. Psychopharmacology 191:377–385

    Article  PubMed  CAS  Google Scholar 

  • Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184:31–38

    Article  PubMed  CAS  Google Scholar 

  • Green B (2004) Focus on aripiprazole. Curr Med Res Opin 20:207–213

    Article  PubMed  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1997) Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol Psychiatry 42:529–545

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Fujita Y, Ishima T, Kunitachi S, Shirayama Y, Iyo M, Hashimoto K (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors. Eur Neuropsychopharmacol 18:448–454

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Fujita Y, Shimizu E, Iyo M (2005) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur J Pharmacol 519:114–117

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Kikuchi T (2005) Aripiprazole, a novel antipsychotic agent: dopamine D2 receptor partial agonist. J Med Invest 52:284–290

    Article  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Domae M, Yamada K, Furukawa T (1996) Effects of the novel antipsychotic agent 7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro -2(1H)-quinolinone (OPC-14597) on prolactin release from the rat anterior pituitary gland. J Pharmacol Exp Ther 277:137–143

    PubMed  CAS  Google Scholar 

  • Ito M, Nagai T, Mizoguchi H, Fukakusa A, Nakanishi Y, Kamei H, Nabeshima T, Takuma K, Yamada K (2007a) Possible involvement of protease-activated receptor-1 in the regulation of morphine-induced dopamine release and hyperlocomotion by the tissue plasminogen activator-plasmin system. J Neurochem 101:1392–1399

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Takuma K, Mizoguchi H, Nagai T, Yamada K (2007b) A novel azaindolizinone derivative ZSET1446 (spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) improves methamphetamine-induced impairment of recognition memory in mice by activating extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 320:819–827

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Shane A, Lexow N, Winokur A, Casanova MF, Kleinman JE (1993) Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenia. Neuropsychopharmacol 8:315–336

    CAS  Google Scholar 

  • Kamei H, Nagai T, Nakano H, Togan Y, Takayanagi M, Takahashi K, Kobayashi K, Yoshida S, Maeda K, Takuma K, Nabeshima T, Yamada K (2006) Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol Psychiatry 59:75–84

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE InvestigatorsNeurocognitive Working Group (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S (1995) 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 274:329–336

    PubMed  CAS  Google Scholar 

  • Lerner SE, Burns RS (1986) Legal issues associated with PCP abuse-the role of the forensic expert. NIDA Res Monogr 64:229–236

    PubMed  CAS  Google Scholar 

  • Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, Lopez JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225–233

    Article  PubMed  CAS  Google Scholar 

  • Maddox VH, Godefroi EF, Parcell RF (1965) The synthesis of phencyclidine and other 1-arylcyclohexylamines. J Med Chem 56:230–235

    Article  Google Scholar 

  • McQuade RD, Burris KD, Jordan S, Tottori K, Kurahashi N, Kikuchi T (2002) Aripiprazole: a dopamine–serotonin system stabilizer. Int Neuropsychopharmacol 5(Suppl. 1):S176

    Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacol 21:106S–115S

    CAS  Google Scholar 

  • Mishara AL, Goldberg TE (2004) A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol Psychiatry 55:1013–1022

    Article  PubMed  CAS  Google Scholar 

  • Mouri A, Noda Y, Enomoto T, Nabeshima T (2007a) Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int 51:173–184

    Article  PubMed  CAS  Google Scholar 

  • Mouri A, Noda Y, Noda A, Nakamura T, Tokura T, Yura Y, Nitta A, Furukawa H, Nabeshima T (2007b) Involvement of a dysfunctional dopamine-D1/N-methyl-d-aspartate-NR1 and Ca2+/calmodulin-dependent protein kinase II pathway in the impairment of latent learning in a model of schizophrenia induced by phencyclidine. Mol Pharmacol 71:1598–1609

    Article  PubMed  CAS  Google Scholar 

  • Murai R, Noda Y, Matsui K, Kamei H, Mouri A, Matsuba K, Nitta A, Furukawa H, Nabeshima T (2007) Hypofunctional glutamatergic neurotransmission in the prefrontal cortex is involved in the emotional deficit induced by repeated treatment with phencyclidine in mice: implications for abnormalities of glutamate release and NMDA-CaMKII signaling. Behav Brain Res 180:152–160

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, Nabeshima Y, Nabeshima T (2003) Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J 17:50–52

    PubMed  CAS  Google Scholar 

  • Nagai T, Takuma K, Kamei H, Ito Y, Nakamichi N, Ibi D, Nakanishi Y, Murai M, Mizoguchi H, Nabeshima T, Yamada K (2007) Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem 14:117–125

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19(Suppl 1):1–93

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Verriele L, Touzard M, Millan MJ (2001) Efficacy of antipsychotic agents at human 5-HT1A receptors determined by [3H]WAY100,635 binding affinity ratios: relationship to efficacy for G-protein activation. Eur J Pharmacol 428:177–184

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Yamada K, Furukawa H, Nabeshima T (1995) Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br J Pharmacol 116:2531–2537

    PubMed  CAS  Google Scholar 

  • Noda Y, Mamiya T, Furukawa H, Nabeshima T (1997) Effects of antidepressants on phencyclidine-induced enhancement of immobility in a forced swimming test in mice. Eur J Pharmacol 324:135–140

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Kamei H, Mamiya T, Furukawa H, Nabeshima T (2000) Repeated phencyclidine treatment induces negative symptom-like behavior in forced swimming test in mice: imbalance of prefrontal serotonergic and dopaminergic functions. Neuropsychopharmacology 23:375–387

    Article  PubMed  CAS  Google Scholar 

  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39

    Article  PubMed  Google Scholar 

  • Pearlson GD (2000) Neurobiology of schizophrenia. Ann Neurol 48:556–566

    Article  PubMed  CAS  Google Scholar 

  • Qiao H, Noda Y, Kamei H, Nagai T, Furukawa H, Miura H, Kayukawa Y, Ohta T, Nabeshima T (2001) Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. Neuroreport 12:11–15

    Article  PubMed  CAS  Google Scholar 

  • Rainey Jr JM, Crowder MK (1975) Prolonged psychosis attributed to phencyclidine: report of three cases. Am J Psychiatry 132:1076–1078

    CAS  Google Scholar 

  • Rivas-Vasquez RA (2003) Aripiprazole: a novel antipsychotic with dopamine-stabilising properties. Prof Psychol: Res Prac 34:108–111

    Article  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH (2000) 5-HT1A receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 48:229–237

    Article  PubMed  CAS  Google Scholar 

  • Rössler W, Salize HJ, van Os J, Riecher-Rössler A (2005) Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 15:399–409

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa Y, Akiyama H, Kashiyama E, Koga T, Miyamoto G (2005) High performance liquid chromatographic methods for the determination of aripiprazole with ultraviolet detection in rat plasma and brain: application to the pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 821:8–14

    Article  PubMed  CAS  Google Scholar 

  • Sprouse JS, Reynolds LS, Braselton JP, Rollema H, Zorn SH (1999) Comparison of the novel antipsychotic ziprasidone with clozapine and olanzapine: inhibition of dorsal raphe cell firing and the role of 5-HT1A receptor activation. Neuropsychopharmacol 21:622–631

    Article  CAS  Google Scholar 

  • Stark AD, Jordan S, Allers KA, Bertekap RL, Chen R, Mistry Kannan T, Molski TF, Yocca FD, Sharp T, Kikuchi T, Burris KD (2007) Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT 2A receptors: functional receptor-binding and in vivo electrophysiological studies. Psychopharmacology 190:373–382

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Nohara S, Yamashita I, Kurachi M, Sumiyoshi C, Jayathilake K, Meltzer HY (2001a) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 158:1722–1725

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C, Meltzer HY (2001b) The effect of tandospirone, a serotonin-1A agonist, on memory function in schizophrenia. Biol Psychiatry 49:861–868

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA (2002) Partial dopamine agonists in the treatment of psychosis. J Neural Transm 109:411–420

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67:9–13

    Article  PubMed  CAS  Google Scholar 

  • Tan HY, Callicott JH, Weinberger DR (2007) Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb Cortex 17:i171–i181

    Article  PubMed  Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  PubMed  CAS  Google Scholar 

  • Vincent SL, Khan Y, Benes FM (1995) Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse 19:112–120

    Article  PubMed  CAS  Google Scholar 

  • Woodward ND, Purdon SE, Meltzer HY, Zald DH (2005) A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol 8:457–472

    Article  PubMed  CAS  Google Scholar 

  • Zocchi A, Fabbri D, Heidbreder CA (2005) Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neurosci Lett 387:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, as Research on Regulatory Science of Pharmaceuticals and Medical Devices, and Research on Risk of Chemical Substances, Health and Labour Sciences Research Grants from the Ministry of Health, Labor and Welfare, Japan, Academic Frontier Project for Private Universities (2007–2011) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and from Uehara Memorial Foundation, International Research Project supported by The Meijo Asian Research Center (MARC). We are grateful to Otsuka Pharmaceutical Co. for providing the aripiprazole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Nabeshima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Supplemental Fig. 1

Effect of single administrations of aripiprazole on PCP-induced cognitive impairment in novel object recognition. Eight days after withdrawal from repeated PCP (10 mg/kg, s.c., for 14 days) treatment, mice were subjected to the novel-object recognition test. Objects A and B were used in the training. Object B was replaced by object C in the retention session. Aripiprazole (0.01–1.0 mg/kg, p.o.) or vehicle (0.1% CMC) was administered 1 h before the training session. A paired comparisons test for each group comparing the time spent on objects in the training session (a) and retention session (b). Values indicate the mean ± S.E. (n = 8–16). **p < 0.01 compared with object A. (DOC 54.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, T., Murai, R., Matsui, K. et al. Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology 202, 315–328 (2009). https://doi.org/10.1007/s00213-008-1240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1240-6

Keywords

Navigation