Skip to main content
Log in

In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Aripiprazole is an atypical antipsychotic drug with high in vitro affinity for 5-HT1A, 5-HT2A and dopamine (DA) D2 receptors. However, its in vivo actions in the brain are still poorly characterized.

Objective

The aim was to study the in vivo actions of aripiprazole in the rat and mouse brain.

Methods

Brain microdialysis and single-unit extracellular recordings were performed.

Results

The systemic administration of aripiprazole reduced 5-HT output in the medial prefrontal cortex (mPFC) and dorsal raphe nucleus of the rat. Aripiprazole also reduced extracellular 5-HT in the mPFC of wild-type (WT) but not of 5-HT1A (−/−) knockout (KO) mice. Aripiprazole reversed the elevation in extracellular 5-HT output produced by the local application of the 5-HT2A/2C receptor agonist DOI in mPFC. Aripiprazole also increased the DA output in mPFC of WT but not of 5-HT1A KO mice, as observed for atypical antipsychotic drugs, in contrast to haloperidol. Contrary to haloperidol, which increases the firing rate of DA neurons in the ventral tegmental area (VTA), aripiprazole induced a very moderate reduction in dopaminergic activity. Haloperidol fully reversed the inhibition in dopaminergic firing rate induced by apomorphine, whereas aripiprazole evoked a partial reversal that was significantly different from that evoked by haloperidol and from the spontaneous reversal of dopaminergic activity in rats treated with apomorphine.

Conclusions

These results indicate that aripiprazole modulates the in vivo 5-HT and DA release in mPFC through the activation of 5-HT1A receptors. Moreover, aripiprazole behaves as a partial agonist at DA D2 autoreceptors in vivo, an action which clearly distinguishes it from haloperidol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine or serotonin

APO:

apomorphine

ARI:

aripiprazole

BAY:

BAYx3702

DA:

dopamine

DPAT:

8-OH-DPAT

DR:

dorsal raphe nucleus

HAL:

haloperidol

KO:

knockout

mPFC:

medial prefrontal cortex

VTA:

ventral tegmental area

WT:

wild type

References

  • Adell A, Casanovas JM, Artigas F (1997) Comparative study in the rat of the actions of different types of stress on the release of 5-HT in raphe nuclei and forebrain areas. Neuropharmacology 36:745–751

    Article  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    PubMed  CAS  Google Scholar 

  • Amano T, Matsubayashi H, Momiyama T, Ishihara K, Todo N, Sasa M (1995) Antagonizing effects of a novel antipsychotic quinolinone derivative (OPC-14597) on dopaminergic inhibition of neuronal activities in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 19:105–116

    Article  PubMed  CAS  Google Scholar 

  • Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in prefrontal cortex. Cereb Cortex 14:281–299

    Article  PubMed  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1996) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 1986(234):1261–1265

    Google Scholar 

  • Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412

    Article  PubMed  CAS  Google Scholar 

  • Arborelius L, Chergui K, Murase S, Nomikos GG, Hook BB, Chouvet G, Hacksell U, Svensson TH (1993a) The 5-HT(1A) receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn-Schmiedeberg’s Arch Pharmacol 347:353–362

    Article  CAS  Google Scholar 

  • Arborelius L, Nomikos GG, Hacksell U, Svensson TH (1993b) (R)-8-OH-DPAT preferentially increases dopamine release in rat medial prefrontal cortex. Acta Physiol Scand 148:465–466

    Article  PubMed  CAS  Google Scholar 

  • Assié MB, Ravailhe V, Faucillon V, Newman-Tancredi A (2005) Contrasting contribution of 5-hydroxytryptamine-1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther 315:265–272

    Article  PubMed  CAS  Google Scholar 

  • Assié MB, Bardin L, Depoortere R, Carilla-Durand E, Newman-Tancredi A (2006) F15599, a highly selective serotonin 5HT1A receptor agonist: in vivo profile in neurochemical and behavioural models of serotonergic activity. Eur Neuropsychopharmacol 16(Suppl 4):S233

    Article  Google Scholar 

  • Bardin L, Kleven MS, Barret-Grevoz C, Depoortere R, Newman-Tancredi A (2006) Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 antagonist and 5-HT1A agonist properties. Neuropsychopharmacology 31:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54:94–104

    PubMed  CAS  Google Scholar 

  • Bortolozzi A, Artigas F (2003) Control of 5-hydroxytryptamine release in the dorsal raphe nucleus by the noradrenergic system in rat brain. Role of alpha-adrenoceptors. Neuropsychopharmacology 28:421–434

    Article  PubMed  CAS  Google Scholar 

  • Bortolozzi A, Amargos-Bosch M, Adell A, Diaz-Mataix L, Serrats J, Pons S, Artigas F (2003) In vivo modulation of 5-hydroxytryptamine release in mouse prefrontal cortex by local 5-HT(2A) receptors: effect of antipsychotic drugs. Eur J Neurosci 18:1235–1246

    Article  PubMed  Google Scholar 

  • Bortolozzi A, Amargós-Bosch M, Toth M, Artigas F, Adell A (2004) In vivo release of serotonin in the dorsal raphe nucleus of 5-HT1Aeceptor knockout mice. J Neurochem 88:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Bruins-Slot LA, De Vries L, Newman-Tancredi A, Cussac D (2006) Differential profile of antipsychotics at serotonin 5-HT1A and dopamine D-2S receptors coupled to extracellular signal-regulated kinase. Eur J Pharmacol 534:63–70

    Article  PubMed  CAS  Google Scholar 

  • Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Celada P, Paladini CA, Tepper JM (1999) GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata. Neuroscience 89:813–825

    Article  PubMed  CAS  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) control of raphe serotonin neurons by the medial prefrontal cortex. Involvement of serotonin 1A, GABA (A) and glutamate receptors. J Neurosci 21:9917–9924

    PubMed  CAS  Google Scholar 

  • Chiodo LA (1988) Dopamine-containing neurons in the mammalian central nervous system: electrophysiology and pharmacology. Neurosci Biobehav Rev 12:49–91

    Article  PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3:1607–1619

    PubMed  CAS  Google Scholar 

  • Cosi C, Carilla-Durand E, Assié MB, Ormiere AM, Maraval M, Leduc N, Newman-Tancredi A (2005) Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 535:135–44

    Article  CAS  Google Scholar 

  • Cox RF, Meller E, Waszczak BL (1993) Electrophysiological evidence for a large receptor reserve for inhibition of dorsal raphe neuronal firing by 5-HT(1A) agonists. Synapse 14:297–304

    Article  PubMed  CAS  Google Scholar 

  • Dahan L, Mnie-Filali M, Arnt J, Hertel P, Hadjeri N (2006) Effects of bifeprunox on the rat ventral tegmental area dopamine and dorsal raphe serotonin neuronal activity. Eur Neuropsychopharmacol 16(Suppl 4):S429

    Article  Google Scholar 

  • DeLeon A, Patel NC, Crismon ML (2004) Aripiprazole: a comprehensive review of its pharmacology, clinical efficacy, and tolerability. Clin Ther 26:649–666

    Article  PubMed  CAS  Google Scholar 

  • Devivo M, Maayani S (1985) Inhibition of forskolin-stimulated adenylate-cyclase activity by 5-HTreceptor agonists. Eur J Pharmacol 119:231–234

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity. Role in atypical antipsychotic action. J Neurosci 25:10831–10843

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Mataix L, Artigas F, Celada P (2006) Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. Eur Neuropsychopharmacol 16:288–296

    Article  PubMed  CAS  Google Scholar 

  • Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21

    PubMed  CAS  Google Scholar 

  • Fa M, Mereu G, Ghiglieri V, Meloni A, Salis P, Gessa GL (2003) Electrophysiological and pharmacological characteristics of nigral dopaminergic neurons in the conscious, head-restrained rat. Synapse 48:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Cortes R, Artigas F (1994) Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci 14:4839–4846

    PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Gessa GL, Devoto P, Diana M, Flore G, Melis M, Pistis M (2000) Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 22:642–649

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ (1999) Buspirone modulates basal and fluoxetine-stimulated dialysate levels of dopamine, noradrenaline and serotonin in the frontal cortex of freely moving rats: activation of serotonin(1A) receptors and blockade of alpha(2)-adrenergic receptors underlie its actions. Neuroscience 93:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Goldner EM, Hsu L, Waraich P, Somers JM (2002) Prevalence and incidence studies of schizophrenic disorders: a systematic review of the literature. Can J Psychiatry 47:833–843

    PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    PubMed  CAS  Google Scholar 

  • Green B (2004) Focus on aripiprazole. Curr Med Res Opin 20:207–213

    Article  PubMed  CAS  Google Scholar 

  • Grunder G, Carlsson A, Wong DF (2003) Mechanism of new antipsychotic medications—occupancy is not just antagonism. Arch Gen Psychiatry 60:974–977

    Article  PubMed  Google Scholar 

  • Harvey PD, Keefe RSE (2001) Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 158:176–184

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Boddeke HGWM (1993) Antagonists, agonists, partial agonists: dilemmas of definition. Trends Pharmacol Sci 14:270–275

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, OLaughlin IA, Meltzer HY (2001) 5-HT2A and D-2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140

    Article  PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D-2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y, Morita S (1995) 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity, J Pharmacol Exp Ther 274:329–336

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  PubMed  CAS  Google Scholar 

  • Lejeune F, Millan MJ (1998) Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY 100, 635-reversible actions of the highly selective ligands, flesinoxan and S-15535. Synapse 30:172–180

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    Article  PubMed  CAS  Google Scholar 

  • Markstein R, Hoyer D, Engel G (1986) 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 333:335–341

    Article  PubMed  CAS  Google Scholar 

  • Martín-Ruiz R, Puig MV, Celada P, Shapiro D, Roth BL, Mengod G, Artigas F (2001a) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866

    PubMed  Google Scholar 

  • Martín-Ruiz R, Ugedo L, Honrubia MA, Mengod G, Artigas F (2001b) Control of serotonergic neurons in rat brain by dopaminergic receptors outside the dorsal raphe nucleus. J Neurochem 77:762–775

    Article  PubMed  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:S106–S115

    Google Scholar 

  • Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT1A) receptors. J Pharmacol Exp Ther 295:853–861

    PubMed  CAS  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Duqueyroix D, Cussac D (2001) Agonist properties of pindolol at h5-HT1A receptors coupled to mitogen-activated protein kinase. Eur J Pharmacol 424:13–17

    Article  PubMed  CAS  Google Scholar 

  • Momiyama T, Amano T, Todo N, Sasa M (1996) Inhibition by a putative antipsychotic quinolinone derivative (OPC-14597) of dopaminergic neurons in the ventral tegmental area. Eur J Pharmacol 310:1–8

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects—a comprehensive literature review. CNS Drugs 19:1–93

    Article  PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Assié MB, Cosi C, Bruins Slot L, Cussac D, Martel JC (2006) F15599, a highly selective serotonin 5HT1A receptor agonist: in vitro affinity and efficacy profile at native rat and recombinant human 5HT1A receptors. Eur Neuropsychopharmacol 16(Suppl 4):S232

    Article  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin(1A) receptor. Proc Natl Acad Sci U S A 95:10734–10739

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15:1–14

    Article  PubMed  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Zorn SH (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338:R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH (2000) 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 48:229–237

    Article  PubMed  CAS  Google Scholar 

  • Rouquier L, Claustre Y, Benavides J (1994) Alpha-1 adrenoceptor antagonists differentially control serotonin release in the hippocampus and striatum: a microdialysis study. Eur J Pharmacol 261:59–64

    Article  PubMed  CAS  Google Scholar 

  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of Serotonin(1A) and Serotonin(2A) receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

    Article  PubMed  Google Scholar 

  • Schoeffter P, Bobirnac I, Boddeke HWGM, Hoyer D (1997) Agonist/antagonist interactions with cloned human 5-HT1A receptors: studies in transfected HeLa cells. Neuropharmacology 36:429–438

    Article  PubMed  CAS  Google Scholar 

  • Semba J, Watanabe A, Kito S, Toru M (1995) Behavioural and neurochemical effects of OPC-14597, a novel antipsychotic drug, on dopaminergic mechanisms in rat brain. Neuropharmacology 34:785–791

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Sprouse JS, Aghajanian GK (1988) Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology 27:707–715

    Article  PubMed  CAS  Google Scholar 

  • Sprouse JS, Reynolds LS, Braselton JP, Rollema H, Zorn SH (1999) Comparison of the novel antipsychotic ziprasidone with clozapine and olanzapine: Inhibition of dorsal raphe cell firing and the role of 5-HT1A receptor activation. Neuropsychopharmacology 21:622–631

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C, Meltzer HY (2001) The effect of tandospirone, a serotonin(1A) agonist, on memory function in schizophrenia. Biol Psychiatry 49:861–868

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Uehara T, Kurachi M, Meltzer HY (2000) Effect of adjunctive treatment with serotonin-1A agonist tandospirone on memory functions in schizophrenia. J Clin Psychopharmacol 20:386–388

    Article  PubMed  CAS  Google Scholar 

  • Tadori Y, Miwa T, Tottori K, Burris KD, Stark A, Mori T, Kikuchi T (2005) Aripiprazole’s low intrinsic activities at human dopamine D2L and D2S receptors render it a unique antipsychotic. Eur J Pharmacol 515:10–19

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA (2002) Partial dopamine agonists in the treatment of psychosis. J Neural Transm 109:411–420

    Article  PubMed  CAS  Google Scholar 

  • Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289:109–119

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Aloia MS, Goldberg TE, Berman KF (1994) The frontal lobes and schizophrenia. J Neuropsychiatry Clin Neurosci 6:419–427

    PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

  • Yokoi F, Grunder G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF (2002) Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27:248–259

    Article  PubMed  CAS  Google Scholar 

  • Zocchi A, Fabbri D, Heidbreder CA (2005) Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neurosci Lett 387:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Spanish Ministry of Education and Science (SAF 2004-05525) and Bristol Myers Squibb. PC and AB are recipients of a Ramón y Cajal contract from the Ministry of Science and Technology. LDM is recipient of a predoctoral fellowship from IDIBAPS. Support from the Spanish Ministry of Health, Instituto de Salud Carlos III, Red de Enfermedades Mentales (REM-TAP Network) is also acknowledged. We thank Leticia Campa and Judith Ballart for skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Artigas.

Additional information

A. Bortolozzi and L. Díaz-Mataix have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortolozzi, A., Díaz-Mataix, L., Toth, M. et al. In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology 191, 745–758 (2007). https://doi.org/10.1007/s00213-007-0698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0698-y

Keywords

Navigation