Skip to main content
Log in

Effects of 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus on the antidepressant-like action of tramadol in the unpredictable chronic mild stress in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Tramadol is a centrally acting clinically effective analgesic, with a weak opioid receptor affinity. It shows antidepressant-like effects in animal models such as forced swimming test, learned helplessness, and unpredictable chronic mild stress (UCMS) and enhances the concentrations of noradrenaline (NA) and serotonin (5-HT) by interfering with their reuptake and release mechanisms, like some antidepressants.

Objectives

The aim of this study was to explore whether the antidepressant-like effects of tramadol is affected by the serotonergic system. For this purpose, the effects of a lesion of the dorsal raphe nucleus (DRN) by 5,7-dihydroxytryptamine (5,7-DHT) on the action of tramadol (20 mg/kg, i.p.) on depression-related behavior and neurochemical correlates were investigated in mice. From the third week onward, we administered tramadol chronically during 4 weeks.

Results

Tramadol reversed the physical and behavioral abnormalities induced by the UCMS. Furthermore, the lesion of the DRN by 5,7-DHT antagonized the antidepressant-like effects of tramadol on the coat state, in the splash test but not in the resident-intruder test. The results obtained by high-pressure liquid chromatography showed that the level of 5-HT was reduced by the lesion in some brain regions without affecting the level of NA. Moreover, while the UCMS regimen diminished the level of 5-HT, tramadol increased the level of this neurotransmitter in certain regions.

Conclusions

These results seem to indicate that the serotonergic system is critically involved in the antidepressant-like effects of tramadol in the UCMS in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bamigbade TA, Davidson C, Langford RM, Stamford JA (1997) Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br J Anaesth 79:352–356

    PubMed  CAS  Google Scholar 

  • Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 229:101–103

    Article  PubMed  CAS  Google Scholar 

  • Berrocoso E, Rojas-Corrales MO, Mico JA (2006) Differential role of 5-HT(1A) and 5-HT (1B) receptors on the antinociceptive and antidepressant effect of tramadol in mice. Psychopharmacology 188:111–118

    Article  PubMed  CAS  Google Scholar 

  • Bishop GA, Ho RH, King JS (1985) An immunohistochemical study of serotonin development in the opossum cerebellum. Anat Embryol 171:325–338

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Cesena R (2001) Mechanism of action of flibanserin in the learned helplessness paradigm in rats. Eur J Pharmacol 433:81–89

    Article  PubMed  CAS  Google Scholar 

  • Chia LG, Ni DR, Cheng LJ, Kuo JS, Cheng FC, Dryhurst G (1996) Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrıdıne and 5,7-dihyroxytryptamine on the locomotor activity and striatal amines in C57BL/6 mice. Neurosci Lett 218:67–71

    Article  PubMed  CAS  Google Scholar 

  • Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos VE, Dawson TM, Nelson RJ (2001) Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci USA 98:1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Jonak E, Fernstrom JD (2004) Serotonin reuptake inhibitors do not prevent 5,7-dihydroxytryptamine-induced depletion of serotonin in rat brain. Brain Res 1007:19–28

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–345

    Article  PubMed  CAS  Google Scholar 

  • Driessen B, Reimann W, Giertz H (1993) Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br J Pharmacol 108:806–811

    PubMed  CAS  Google Scholar 

  • Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28:435–451

    Article  PubMed  CAS  Google Scholar 

  • Faron-Gorecka A, Kusmider M, Inan SY, Siwanowicz J, Dziedzicka-Wasylewska M (2004) Effects of tramadol on alpha2-adrenergic receptors in the rat brain. Brain Res 1016:263–267

    Article  PubMed  CAS  Google Scholar 

  • Fuller RW (1994) Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. Life Sci 55:163–167

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TB, Shapira NA, Keck PE (1999) Rapid remission of OCD with tramadol hydrochloride. Am J Psychiatry 156:660–661

    PubMed  CAS  Google Scholar 

  • Halfpenny DM, Callado LF, Hopwood SE, Bamigbade TA, Langford RM, Stamford JA (1999) Effects of tramadol stereoisomers on norepinephrine efflux and uptake in the rat locus coeruleus measured by real time voltammetry. Br J Anaesth 83:909–915

    PubMed  CAS  Google Scholar 

  • Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30:203–214

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    PubMed  CAS  Google Scholar 

  • Kitzman PH, Bishop GA (1994) The origin of serotoninergic afferents to the cat’s cerebellar nuclei. J Comp Neurol 340:541–550

    Article  PubMed  CAS  Google Scholar 

  • Koros E, Bienkowski P, Kostowski W (2005) Effects of 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus on ethanol discrimination in the rat. Alcohol 36:107–115

    Article  PubMed  CAS  Google Scholar 

  • Lieben CK, Steinbusch HW, Blokland A (2006) 5,7-DHT lesion of the dorsal raphe nuclei impairs object recognition but not affective behaviour and corticosterone response to stressor in the rat. Behav Brain Res 168:197–207

    Article  PubMed  Google Scholar 

  • Maes M, Meltzer HY (1995) The 5-HT hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology. Raven, New York, pp 933–944

    Google Scholar 

  • Mann JJ, McBride PA, Brown RP, Linnoila M, Leon AC, DeMeo M, Mieczkowski T, Myers JE, Stanley M (1992) Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric inpatients. Arch Gen Psychiatry 49:442–446

    PubMed  CAS  Google Scholar 

  • Mattia C, Coluzzi F (2005) Tramadol: focus on musculoskeletal and neuropathic pain. Minerva Anestesiol 711:565–584

    Google Scholar 

  • Maurer-Spurej E, Pittendreigh C, Misri S (2007) Platelet serotonin levels support depression scores for women with postpartum depression. J Psychiatry Neurosci. 32:23–29

    PubMed  Google Scholar 

  • McQuade R, Sharp T (1997) Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem 69:791–796

    Article  PubMed  CAS  Google Scholar 

  • Michard C, Carlier M (1985) Les conduites d’aggresion intraspecifique chez la souris domestique: Differences individuelles et analyses genetiques. Biol Behav 10:146

    Google Scholar 

  • Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370

    Article  PubMed  CAS  Google Scholar 

  • Mineur YS, Prasol DJ, Belzung C, Crusio WE (2003) Agonistic behavior and unpredictable chronic mild stress in mice. Behav Genet 33:513–519

    Article  PubMed  Google Scholar 

  • O’Leary OF, Bechthol AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioural response to different classes of antidepressant drug in the mouse tail suspension test. Psychopharmacology 192:357–371

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology 147:162–167

    Article  PubMed  CAS  Google Scholar 

  • Pineyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51:533–591

    PubMed  CAS  Google Scholar 

  • Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260:275–285

    PubMed  CAS  Google Scholar 

  • Redrobe JP, MaCSweeney CP, Bourin M (1996) The role of 5-HT1A and 5-HT1B receptors in antidepressant drug actions in the mouse forced swimming test. Eur J Pharmacol 318:213–220

    Article  PubMed  CAS  Google Scholar 

  • Rex A, Thomas H, Hörtnagl H, Voits M, Fink H (2003) Behavioural and microdialysis study after neurotoxic lesion of dorsal raphe nucleus in rats. Pharmacolo Biochem Behav 74:587–593

    Article  CAS  Google Scholar 

  • Rojas-Corrales MO, Gibert-Rahola J, Mico JA (1998) Tramadol induces antidepressant-type effects in mice. Life Sci 63:175–180

    Article  Google Scholar 

  • Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J, Mico JA (2002) Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sci 72:143–152

    Article  PubMed  CAS  Google Scholar 

  • Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Shapira NA, Verduin ML, DeGraw JD (2001) Treatment of refractory major depression with tramadol monotherapy. J Clin Psychiatry 62:205–206

    PubMed  CAS  Google Scholar 

  • Spencer C (2000) The efficacy of intramuscular tramadol as a rapid-onset antidepressant. Aust N Z J Psychiatry 34:1032–1033

    Article  PubMed  CAS  Google Scholar 

  • Torres IL, Gamaro GD, Vasconcellos AP, Silveira R, Dalmaz C (2002) Effects of chronic restraint stress on feeding behaviour and on monoamine levels in different brain structures in rats. Neurochem Res 27:519–525

    Article  PubMed  CAS  Google Scholar 

  • Vancassel S, Leman S, Hanonick L, Denis S, Roger J, Nollet M, Bodard S, Kousignian I, Belzung C, Chalon S (2008) n−3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. J Lipid Res 49:340–348

    Article  PubMed  CAS  Google Scholar 

  • van der Vegt BJ V, Lieuwes N, Cremers TI, de Boer SF, Koolhaas JM (2003) Cerebrospinal fluid monoamine and metabolite concentrations and aggression in rats. Horm Behav 44:199–208

    Article  PubMed  CAS  Google Scholar 

  • Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 167:304–314

    Google Scholar 

  • Wieland S, Lucki I (1990) Antidepressant-like activity of 5-HT1A agonists measured with the forced swim test. Psychopharmacology 101:497–504

    Article  PubMed  CAS  Google Scholar 

  • Yalcin I, Aksu F, Belzung C (2005) Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 514:165–174

    PubMed  CAS  Google Scholar 

  • Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C (2007) Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 18:623–631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipek Yalcin.

Additional information

This research was conducted in accordance with the European Community guidelines for the use of experimental animals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yalcin, I., Coubard, S., Bodard, S. et al. Effects of 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus on the antidepressant-like action of tramadol in the unpredictable chronic mild stress in mice. Psychopharmacology 200, 497–507 (2008). https://doi.org/10.1007/s00213-008-1227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1227-3

Keywords

Navigation