Skip to main content
Log in

A long-term ecstasy-related change in visual perception

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 19 June 2007

Abstract

Rationale

The present study provides the first evidence of the long-term consequences of ecstasy use on visual processes thought to reflect serotonergic functions in the occipital lobe. Methylenedioxymethamphetamine (“ecstasy”) is known to cause lasting changes to the serotonin system in animals, and convergent evidence suggests that similar changes occur in human ecstasy users. Other research suggests that serotonin may be involved in lateral inhibition between orientation sensitive neurons in the occipital lobe, and that disruption to the serotonin system causes an increase in the magnitude of the tilt aftereffect illusion that is known depend on those neurons.

Objectives

The aim of the present study was to determine if ecstasy users have detectable changes in occipital lobe behavioural functioning, as revealed by the tilt aftereffect illusion.

Materials and methods

Thirty ecstasy users and 34 non-drug using controls were compared on the magnitude of the tilt aftereffect illusion following adaptation to stimuli oriented at 15 and 40° from vertical.

Results

Ecstasy users who had not used amphetamines for 115 days or more had a larger average tilt aftereffect than non-drug using controls after adaptation to 40° stimuli but not after adaptation to 15° stimuli. Additionally, there was no difference between non-drug using controls and ecstasy users who had used amphetamines within the last 61 days at either adaptation angle.

Conclusions

The results were consistent with the proposal that ecstasy-related damage to the serotonin system causes behavioural changes on tests of visual perception processes that are thought to reflect serotonergic functions in the occipital lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anglin AD, Hser Y, Chou C (1993) Reliability and validity of retrospective behavioural self-report by narcotics addicts. Eval Rev 17(1):91–108

    Article  Google Scholar 

  • Asgari K, Body S, Rickard JF, Zhang Z, Fone KC, Bradshaw CM et al (2005) Effects of quipazine and m-chlorophenylbiguanide (m-CPBG) on the discrimination of durations: evidence for the involvement of 5-HT2A but not 5-HT3 receptors. Behav Pharmacol 16(1):43–51

    Article  PubMed  CAS  Google Scholar 

  • Bell C, Abrams J, Nutt D (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399–405

    Article  PubMed  CAS  Google Scholar 

  • Buchert R, Thomasius R, Nebeling B, Petersen K, Obrocki J, Jenicke L et al (2003) Long-term effects of “ecstasy” use on serotonin transporters of the brain investigated by PET. J Nucl Med 44(3):375–384

    PubMed  CAS  Google Scholar 

  • Buchert R, Thomasius R, Wilke F, Petersen K, Nebeling B, Obrocki J et al (2004) A voxel-based PET investigation of the long-term effects of “ecstasy” consumption on brain serotonin transporters. Am J Psychiatry 161(7):1181–1189

    Article  PubMed  Google Scholar 

  • Carpenter RH, Blakemore C (1973) Interactions between orientations in human vision. Exp Brain Res 18(3):287–303

    Article  PubMed  CAS  Google Scholar 

  • Cole JC, Sumnall HR, Grob CS (2002) Sorted: ecstasy. Psychologist 15(9):464–467

    Google Scholar 

  • Cowan RL, Haga E, Frederick BD, Dietrich MS, Vimal RL, Lukas SE et al (2006) MDMA use is associated with increased spatial BOLD fMRI visual cortex activation in human MDMA users. Pharmacol Biochem Behav 84(2):219–228

    Article  PubMed  CAS  Google Scholar 

  • Croft RJ, Mackay AJ, Mills AT, Gruzelier JG (2001) The relative contributions of ecstasy and cannabis to cognitive impairment. Psychopharmacology (Berl) 153(3):373–379

    Article  CAS  Google Scholar 

  • Dafters RI, Duffy F, O’Donnell PJ, Bouquet C (1999) Level of use of 3,4-methylenedioxymethamphetamine (MDMA or Ecstasy) in humans correlates with EEG power and coherence. Psychopharmacology 145(1):82–90

    Article  PubMed  CAS  Google Scholar 

  • Daumann J, Schnitker R, Weidemann J, Schnell K, Thron A, Gouzoulis-Mayfrank E (2003) Neural correlates of working memory in pure and polyvalent ecstasy (MDMA) users. Neuroreport 14(15):1983–1987

    Article  PubMed  CAS  Google Scholar 

  • Daumann J, Fischermann T, Pilatus U, Thron A, Moeller-Hartmann W, Gouzoulis-Mayfrank E (2004) Proton magnetic resonance spectroscopy in ecstasy (MDMA) users. Neurosci Lett 362(2):113–116

    Article  PubMed  CAS  Google Scholar 

  • de Win MM, Reneman L, Reitsma JB, den Heeten GJ, Booij J, van den Brink W (2004) Mood disorders and serotonin transporter density in ecstasy users—the influence of long-term abstention, dose, and gender. Psychopharmacology (Berl) 173(3–4):376–382

    Article  CAS  Google Scholar 

  • Derogatis LR (1993) BSI: brief symptom inventory: administration, scoring and procedures manual, 3rd edn. National Computer Systems, Minneapolis, MN

    Google Scholar 

  • Dughiero G, Schifano F, Forza G (2001) Personality dimensions and psychopathological profiles of Ecstasy users. Hum Psychopharmacol 16(8):635–639

    Article  PubMed  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ et al (1994) fMRI of human visual cortex. Nature 369(6481):525 [erratum in Nature (1994), 1370(6485):1106]

    Article  PubMed  CAS  Google Scholar 

  • Fantegrossi WE, Ullrich T, Rice KC, Woods JH, Winger G (2002) 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers as reinforcers in rhesus monkeys: serotonergic involvement. Psychopharmacology (Berl) 161(4):356–364

    Article  CAS  Google Scholar 

  • Fox HC, Toplis AS, Turner JJ, Parrott AC (2001) Auditory verbal learning in drug-free Ecstasy polydrug users. Hum Psychopharmacol 16(8):613–618

    Article  PubMed  CAS  Google Scholar 

  • Gamma A, Frei E, Lehmann D, Pascual-Marqui RD, Hell D, Vollenweider FX (2000) Mood state and brain electric activity in Ecstasy users. Neuroreport 11(1):157–162

    Article  PubMed  CAS  Google Scholar 

  • Gartside SE, Cowen PJ, Sharp T (1992) Evidence that the large neutral amino acid l-valine decreases electrically-evoked release of 5-HT in rat hippocampus in vivo. Psychopharmacology (Berl) 109(1–2):251–253

    Article  CAS  Google Scholar 

  • Gerra G, Zaimovic A, Ampollini R, Giusti F, Delsignore R, Raggi MA et al (2001) Experimentally induced aggressive behavior in subjects with 3,4-methylenedioxy-methamphetamine (“ecstasy”) use history: psychobiological correlates. J Subst Abuse 13(4):471–491

    Article  PubMed  CAS  Google Scholar 

  • Gescheider GA (1985) Psychophysics: method, theory and application. IEA, London

    Google Scholar 

  • Gibson JJ, Radner M (1937) Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J Exp Psychol 20:453–467

    Article  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55(3):463–508

    Article  PubMed  CAS  Google Scholar 

  • Hanson KL, Luciana M (2004) Neurocognitive function in users of MDMA: the importance of clinically significant patterns of use. Psychol Med 34(2):229–246

    Article  PubMed  Google Scholar 

  • Harris JP, Gelbtuch MH, Phillipson OT (1986) Effects of haloperidol and nomifensine on the visual aftereffects of tilt and movement. Psychopharmacology (Berl) 89(2):177–182

    Article  CAS  Google Scholar 

  • Heimer L (1994) The human brain and spinal cord, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hubel DH, Wiesel TN (1970) Stereoscopic vision in macaque monkey. Nature 225:41–42

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 158(3):295–305

    Article  PubMed  CAS  Google Scholar 

  • Klugman A, Hardy S, Baldeweg T, Gruzelier J (1999) Toxic effect of MDMA on brain serotonin neurons. Lancet 353(9160):1269–1270

    Article  PubMed  CAS  Google Scholar 

  • Lucas SK, Carstairs J, Shores EA (2003) A comparison of methods to estimate premorbid intelligence in an Australian sample: data from the Macquarie University Neuropsychological Normative Study (MUNNS). Aust Psychol 38(3):227–237

    Article  Google Scholar 

  • Masini R, Antonietti A, Moja EA (1990) An increase in strength of tilt aftereffect associated with tryptophan depletion. Percept Mot Skills 70(2):531–539

    PubMed  CAS  Google Scholar 

  • McCann UD, Ricaurte GA (2004) Amphetamine neurotoxicity: accomplishments and remaining challenges. Neurosci Biobehav Rev 27(8):821–826

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT et al (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [(11)C]McN5652 and [(11)C]DASB. Neuropsychopharmacology 30:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Nichols DE, Oberlender R (1990) Structure-activity relationships of MDMA and related compounds: a new class of psychoactive agents? In: Peroutka SJ (ed) Ecstasy: the clinical pharmacological and neurotoxicological effects of the drug MDMA. Kluwer, Boston

    Google Scholar 

  • Pagano RR (1998) Understanding statistics in the behavioural sciences. Brooks/Cole, Pacific Grove, CA

    Google Scholar 

  • Reneman L, Booij J, Schmand B, van den Brink W, Gunning B (2000a) Memory disturbances in “ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology 148(3):322–324

    Article  PubMed  CAS  Google Scholar 

  • Reneman L, Habraken JBA, Majoie CBL, Booij J, den Heeten GJ (2000b) MDMA (“ecstasy”) and its association with cerebrovascular accidents: preliminary findings. Am J Neuroradiol 21(6):1001–1007

    PubMed  CAS  Google Scholar 

  • Reneman L, Endert E, de Bruin K, Lavalaye J, Feenstra MG, de Wolff FA et al (2002) The acute and chronic effects of MDMA (“ecstasy”) on cortical 5-HT2A receptors in rat and human brain. Neuropsychopharmacology 26(3):387–396

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL, Shapley RM, Hawken MJ (2002) Orientation selectivity in macaque V1: diversity and laminar dependence. J Neurosci 22(13):5639–5651

    PubMed  CAS  Google Scholar 

  • Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. J Neurophysiol 39(6):1320-1333

    PubMed  CAS  Google Scholar 

  • Shapley R, Hawken M, Ringach DL (2003) Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38(5):689–699

    Article  PubMed  CAS  Google Scholar 

  • Shulgin AT (1990) History of MDMA. In: Peroutka SJ (ed) Ecstasy: the clinical, pharmological and neurotoxicological effects of the drug MDMA. Kluwer, Boston, pp 1–20

    Google Scholar 

  • Steele TD, McCann UD, Ricaurte GA (1994) 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”): pharmacology and toxicology in animals and humans. Addiction 89:539–551

    Article  PubMed  CAS  Google Scholar 

  • Terriere D, Janssen PM, Gommeren W, Gysemans M, Mertens JJ, Leysen JE (1995) Evaluation of radioiodo-4-amino-N-[1-[3-(4-fluorophenoxy)-propyl]-4- methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide as a potential 5HT2 receptor tracer for SPE(C)T. Nucl Med Biol 22(8):1005

    Article  PubMed  CAS  Google Scholar 

  • Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P, Wartberg L et al (2003) Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology (Berl) 167(1):85–96

    CAS  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI et al (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95(3):811–817

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Baumann MH, Xu H, Rothman RB (2004) 3,4-methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 53(4):240–248

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Carlson RG, Falck RS, Siegal HA, Rahman A, Li L (2005) Respondent-driven sampling to recruit MDMA users: a methodological assessment. Drug Alcohol Depend 78(2):147–157

    Article  PubMed  Google Scholar 

  • Wilson ME, Cragg BG (1967) Projections from the lateral genticulate nucleus in the cat and monkey. J Anat 101:677–692

    PubMed  CAS  Google Scholar 

  • Zeki S (1978) Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol 277:273–290

    PubMed  CAS  Google Scholar 

  • Zuckerman M (1994) Behavioral expressions and biosocial bases of sensation seeking. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgement

This study was aided by a grant to E.M. from the Faculties Research Grant Scheme of The Australian National University. J.B. was supported for part of the research by an Australian postgraduate award (APA). The experiments complied with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Brown.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00213-007-0854-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J., Edwards, M., McKone, E. et al. A long-term ecstasy-related change in visual perception. Psychopharmacology 193, 437–446 (2007). https://doi.org/10.1007/s00213-007-0785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0785-0

Keywords

Navigation