Skip to main content
Log in

Combined treatment of ascorbic acid or alpha-tocopherol with dopamine receptor antagonist or nitric oxide synthase inhibitor potentiates cataleptic effect in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Drugs like haloperidol (Hal) that decrease dopamine (DA) neurotransmission in the striatum induce catalepsy in rodents and Parkinson disease-like symptoms in humans. Nitric oxide synthase (NOS) inhibitors interfere with motor activity, disrupting rodent exploratory behavior and inducing catalepsy. Catalepsy induced by NOS inhibitors probably involves striatal DA-mediated neurotransmission. Antioxidants such as ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) have also been shown to interfere with movement modulation and the DA system.

Objective

The objective of the study is to investigate if the antioxidants vitamins C and E would influence the catalepsy produced by Hal and NOS inhibitors.

Methods

The effects of the following treatments on catalepsy were examined using the hanging-bar test on male Swiss mice (25–30 g): (1) vitamin C (30–1,000 mg/kg)×Hal (1 mg/kg); (2) vitamin C (90–1,000 mg/kg)×N G-nitro-l-arginine (LNOARG, 10 and 40 mg/kg); (3) vitamin C (300 mg/kg)×N G-nitro-l-arginine methylester (LNAME, 20–80 mg/kg); (4) vitamin C (300 mg/kg) × 7-nitroindazole (7NI, 3–50 mg/kg); (5) vitamin C (90 mg/kg i.p.) × LNOARG [40 mg/kg twice a day during 4 days (subchronic treatment)]; (7) vitamin E (3–100 mg/kg) × Hal (1 mg/kg); and (6) vitamin E (3–100 mg/kg) × LNOARG (40 mg/kg).

Results

Vitamin C enhanced the catalepsy produced by NOS inhibitors and Hal. Treatment with vitamin C did not affect tolerance to LNOARG cataleptic effect induced by subchronic treatment. Vitamin E potentiated the catalepsy induced by LNOARG at all doses tested; in contrast, catalepsy induced by Hal was enhanced only by the dose of 100 mg/kg.

Conclusions

Results support an involvement of dopaminergic and nitrergic systems in motor behavior control and provide compelling evidence that combined administration of the antioxidants vitamins C and E with either Hal or NOS inhibitors exacerbates extrapyramidal effects. Further studies are needed to assess possible clinical implications of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Koyama T (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res 643:276–281

    Article  PubMed  CAS  Google Scholar 

  • Adler LA, Peselow E, Rotrosen J, Duncan E, Lee M, Rosenthal M, Angrist B (1993) Vitamin E treatment of tardive dyskinesia. Am J Psychiatry 150:1405–1407

    PubMed  CAS  Google Scholar 

  • Azzi A, Stocker A (2000) Vitamin E: non-antioxidant roles. Prog Lipid Res 39:231–255

    Article  PubMed  CAS  Google Scholar 

  • Babbedge RC, Bland-Ward PA, Hart SL, Moore PK (1993) Inhibition of rat cerebellar nitric oxide synthase by 7-nitroindazole and related substituted indazoles. Br J Pharmacol 110:225–228

    PubMed  CAS  Google Scholar 

  • Bacopoulos NG (1982) Dopamine receptors in rat brain regions. Optimal conditions for 3H-agonist binding, pH dependency and lack of inhibition by ascorbic acid. Biochem Pharmacol 31:3085–3091

    Article  PubMed  CAS  Google Scholar 

  • Barak Y, Swartz M, Shamir E, Stein D, Weizman A (1998) Vitamin E (alpha-tocopherol) in the treatment of tardive dyskinesia: a statistical meta-analysis. Ann Clin Psychiatry 10:101–105

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Rupprecht R, Skutella T, Holsboer F (1995) Haloperidol-induced cell death—mechanism and protection with vitamin E in vitro. NeuroReport 7:360–364

    PubMed  CAS  Google Scholar 

  • Boscoboinik D, Szewczyk A, Azzi A (1991) Alpha-tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity. Arch Biochem Biophys 286:264–269

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Oblin A, Sanger DJ, Schoemaker H, Perrault G (2000) Haloperidol-induced catalepsy is absent in dopamine D(2), but maintained in dopamine D(3) receptor knock-out mice. Eur J Pharmacol 391:63–73

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JF, Clausing P, Gough B, Slikker W Jr, Holson RR (1995) Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen. Brain Res 699:62–70

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  CAS  Google Scholar 

  • Bush MA, Pollack GM (2001) Pharmacokinetics and pharmacodynamics of 7-nitroindazole, a selective nitric oxide synthase inhibitor, in the rat hippocampus. Pharm Res 18:1607–1612

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Katz M, Jackson-Lewis V, Fahn S (1989) Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 476:10–15

    Article  PubMed  CAS  Google Scholar 

  • Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024

    PubMed  CAS  Google Scholar 

  • Choi DW (1993) Nitric oxide: foe or friend to the injured brain? Proc Natl Acad Sci U S A 90:9741–9743

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (1994) Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann N Y Acad Sci 738:8–14

    Article  PubMed  CAS  Google Scholar 

  • Coppens HJ, Sebens JB, Korf J (1995) Catalepsy, Fos protein, and dopamine receptor occupancy after long-term haloperidol treatment. Pharmacol Biochem Behav 51:175–182

    Article  PubMed  CAS  Google Scholar 

  • Del Bel EA, Guimarães FS (2000) Sub-chronic inhibition of nitric-oxide synthesis modifies haloperidol-induced catalepsy and the number of NADPH-diaphorase neurons in mice. Psychopharmacology (Berl) 147:356–361

    Article  Google Scholar 

  • Del Bel EA, da Silva CA, Guimarães FS (1998) Catalepsy induced by nitric oxide synthase inhibitors. Gen Pharmacol 30:245–248

    PubMed  Google Scholar 

  • Del Bel EA, Souza AS, Guimarães FS, da-Silva CA, Nucci-da-Silva LP (2002) Motor effects of acute and chronic inhibition of nitric oxide synthesis in mice. Psychopharmacology (Berl) 161:32–37

    Article  CAS  Google Scholar 

  • Del Bel EA, da Silva CA, Guimarães FS, Bermudez-Echeverry M (2004) Catalepsy induced by intra-striatal administration of nitric oxide synthase inhibitors in rats. Eur J Pharmacol 485:175–181

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Nanayakkara I, Goss-Sampson MA, Muller DP, Harding AE, Marsden CD, Jenner P (1994) Nigral dopaminergic cell loss in vitamin E deficient rats. NeuroReport 5:1773–1776

    Article  PubMed  CAS  Google Scholar 

  • Dorevitch A, Kalian M, Shlafman M, Lerner V (1997) Treatment of long-term tardive dyskinesia with vitamin E. Biol Psychiatry 41:114–116

    Article  PubMed  CAS  Google Scholar 

  • Dorfman-Etrog P, Hermesh H, Prilipko L, Weizman A, Munitz H (1999) The effect of vitamin E addition to acute neuroleptic treatment on the emergence of extrapyramidal side effects in schizophrenic patients: an open label study. Eur Neuropsychopharmacol 9:475–477

    Article  PubMed  CAS  Google Scholar 

  • Dorris RL, Dill RE (1986) Potentiation of haloperidol-induced catalepsy by ascorbic acid in rats and nonhuman primates. Pharmacol Biochem Behav 24:781–783

    Article  PubMed  CAS  Google Scholar 

  • Dunlap CE III, Leslie FM (1985) Effect of ascorbate on the toxicity of morphine in mice. Neuropharmacology 24:797–804

    Article  PubMed  CAS  Google Scholar 

  • Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48:1–19

    Article  PubMed  CAS  Google Scholar 

  • Ewing AG, Alloway KD, Curtis SD, Dayton MA, Wightman RM, Rebec GV (1983) Simultaneous electrochemical and unit recording measurements: characterization of the effects of d-amphetamine and ascorbic acid on neostriatal neurons. Brain Res 261:101–108

    Article  PubMed  CAS  Google Scholar 

  • Fahn S (1992) A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease. Ann Neurol 32(Suppl):S128–S132

    Article  PubMed  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci 14:60–67

    Article  PubMed  CAS  Google Scholar 

  • Gotz ME, Kunig G, Riederer P, Youdim MB (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt EN, Coupet J, Rauh E, Szucs-Myers VA (1980) Is dopamine antagonism a requisite of neuroleptic activity? Arch Int Pharmacodyn Ther 248:105–119

    PubMed  CAS  Google Scholar 

  • Guimarães FS, de Aguiar JC, Del Bel EA, Ballejo G (1994) Anxiolytic effect of nitric oxide synthase inhibitors microinjected into the dorsal central grey. NeuroReport 3:1929–1932

    Article  Google Scholar 

  • Gulley JM, Rebec GV (1999) Modulatory effects of ascorbate, alone or with haloperidol, on a lever-release conditioned avoidance response task. Pharmacol Biochem Behav 63:125–129

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Cabbat FS, Manzino L (1981) Differential inhibitory effects of ascorbic acid on the binding of dopamine agonists and antagonists to neostriatal membrane preparations: correlations with behavioral effects. Res Commun Chem Pathol Pharmacol 34:409–421

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Hanly JG (1983) Ascorbic acid and the binding of DA agonists to neostriatal membrane preparations. Neuropharmacology 22:135–137

    Article  PubMed  CAS  Google Scholar 

  • Hoyt KR, Tang LH, Aizenman E, Reynolds IJ (1992) Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res 592:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kawabata A, Umeda N, Takagi H (1993) l-Arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway. Br J Pharmacol 109:73–79

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Rebec GV (1998) Ascorbate modulates glutamate-induced excitations of striatal neurons. Brain Res 812:14–22

    Article  PubMed  CAS  Google Scholar 

  • Koffer KB, Berney S, Hornykiewicz O (1978) The role of the corpus striatum in neuroleptic- and narcotic-induced catalepsy. Eur J Pharmacol 47:81–86

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  • Lohr JB, Cadet JL, Lohr MA, Larson L, Wasli E, Wade L, Hylton R, Vidoni C, Jeste DV, Wyatt RJ (1988) Vitamin E in the treatment of tardive dyskinesia: the possible involvement of free radical mechanisms. Schizophr Bull 14:291–296

    PubMed  CAS  Google Scholar 

  • Manzoni O, Bockaert J (1993) Nitric oxide synthase activity endogenously modulates NMDA receptors. J Neurochem 61:368–370

    Article  PubMed  CAS  Google Scholar 

  • Marras RA, Martins AP, Del Bel EA, Guimarães FS (1995) l-NOARG, an inhibitor of nitric oxide synthase, induces catalepsy in mice. NeuroReport 7:158–160

    PubMed  CAS  Google Scholar 

  • Martin A, Janigian D, Shukitt-Hale B, Prior RL, Joseph JA (1999) Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations. Brain Res 845:50–59

    Article  PubMed  CAS  Google Scholar 

  • Masserano JM, Gong L, Kulaga H, Baker I, Wyatt RJ (1996) Dopamine induces apoptotic cell death of a catecholaminergic cell line derived from the central nervous system. Mol Pharmacol 50:1309–1315

    PubMed  CAS  Google Scholar 

  • Miquel M, Aguilar MA, Aragon CM (1999) Ascorbic acid antagonizes ethanol-induced locomotor activity in the open-field. Pharmacol Biochem Behav 62:361–366

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The l-arginine–nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  • Montague PR, Gancayco CD, Winn MJ, Marchase RB, Friedlander MJ (1994) Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science 263:973–977

    Article  PubMed  CAS  Google Scholar 

  • Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL (1993) 7-Nitroindazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol 108:296–297

    PubMed  CAS  Google Scholar 

  • Morris BJ, Höllt V, Herz A (1988) Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: contrasting effects of D1 and D2 antagonists. Neuroscience 25:525–532

    Article  PubMed  CAS  Google Scholar 

  • Nucci-da-Silva LP, Guimarães FS, Del Bel EA (1999) Serotonin modulation of catalepsy induced by N(G)-nitro-l-arginine in mice. Eur J Pharmacol 379:47–52

    Article  PubMed  CAS  Google Scholar 

  • Papa SM, Engber TM, Boldry RC, Chase TN (1993) Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Eur J Pharmacol 232:247–253

    Article  PubMed  CAS  Google Scholar 

  • Pierce RC, Rebec GV (1992) Dopamine-, NMDA- and sigma-receptor antagonists exert differential effects on basal and amphetamine-induced changes in neostriatal ascorbate and DOPAC in awake, behaving rats. Brain Res 579:59–66

    Article  PubMed  CAS  Google Scholar 

  • Pierce RC, Rowlett JK, Rebec GV, Bardo MT (1995) Ascorbate potentiates amphetamine-induced conditioned place preference and forebrain dopamine release in rats. Brain Res 688:21–26

    Article  PubMed  CAS  Google Scholar 

  • Post A, Rucker M, Ohl F, Uhr M, Holsboer F, Almeida OF, Michaelidis TM (2002) Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology 26:397–407

    Article  PubMed  CAS  Google Scholar 

  • Rebec GV, Pierce RC (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 43:537–565

    Article  PubMed  CAS  Google Scholar 

  • Rebec GV, Wang Z (2001) Behavioral activation in rats requires endogenous ascorbate release in striatum. J Neurosci 21:668–675

    PubMed  CAS  Google Scholar 

  • Reilly DK, Hershey L, Rivera-Calimlim L, Shoulson I (1983) On–off effects in Parkinson’s disease: a controlled investigation of ascorbic acid therapy. Adv Neurol 37:51–60

    PubMed  CAS  Google Scholar 

  • Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  PubMed  CAS  Google Scholar 

  • Roghani M, Behzadi G (2001) Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 892:211–217

    Article  PubMed  CAS  Google Scholar 

  • Rondouin G, Bockaert J, Lerner-Natoli M (1993) l-Nitroarginine, an inhibitor of NO synthase, dramatically worsens limbic epilepsy in rats. NeuroReport 4:1187–1190

    PubMed  CAS  Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759

    Article  PubMed  CAS  Google Scholar 

  • Sandor NT, Brassai A, Puskas A, Lendvai B (1995) Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Res Bull 36:483–486

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Saito H, Katsuki H (1993) Synergism of tocopherol and ascorbate on the survival of cultured brain neurones. NeuroReport 4:1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Segieth J, Getting SJ, Biggs CS, Whitton PS (1995) Nitric oxide regulates excitatory amino acid release in a biphasic manner in freely moving rats. Neurosci Lett 200:101–104

    Article  PubMed  CAS  Google Scholar 

  • Seregi A, Schaefer A, Komlos M (1978) Protective role of brain ascorbic acid content against lipid peroxidation. Experientia 34:1056–1057

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Bredt DS (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol Sci 12:125–128

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Ferris CD (2000) Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 157:1738–1751

    Article  PubMed  CAS  Google Scholar 

  • Spivak B, Schwartz B, Radwan M, Weizman A (1992) Alpha-tocopherol treatment for tardive dyskinesia. J Nerv Ment Dis 180:400–401

    Article  PubMed  CAS  Google Scholar 

  • Starr MS, Starr BS (1995) Do NMDA receptor-mediated changes in motor behaviour involve nitric oxide? Eur J Pharmacol 272:211–217

    Article  PubMed  CAS  Google Scholar 

  • Teagarden MA, Rebec GV (2001) Effects of long-term haloperidol treatment on glutamate-evoked ascorbate release in rat striatum. Eur J Pharmacol 418:213–216

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LC, Thomas TN, Middaugh LD, Zemp JW (1979) Effect of ascorbic acid on neurochemical, behavioral, and physiological systems mediated by catecholamines. Life Sci 25:2189–2195

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LC, Morris PE Jr, Spollen JJ, Ashe SC (1992) Stereospecific effects of ascorbic acid and analogues on D1 and D2 agonist binding. Life Sci 51:921–930

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Tajti J, Klivenyi P, Pinter S, Karg E (2001) Sodium azide treatment decreases striatal and cortical concentrations of alpha-tocopherol in rats. J Neural Transm 108:273–278

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  PubMed  CAS  Google Scholar 

  • West AR, Galloway MP (1997) Endogenous nitric oxide facilitates striatal dopamine and glutamate efflux in vivo: role of ionotropic glutamate receptor-dependent mechanisms. Neuropharmacology 36:1571–1581

    Article  PubMed  CAS  Google Scholar 

  • Yntema OP, Korf J (1987) Transient suppression by stress of haloperidol induced catalepsy by the activation of the adrenal medulla. Psychopharmacology (Berl) 91:131–134

    Article  CAS  Google Scholar 

  • Yoshida Y, Ono T, Kawano K, Miyagishi T (1994) Distinct sites of dopaminergic and glutamatergic regulation of haloperidol-induced catalepsy within the rat caudate-putamen. Brain Res 639:139–148

    Article  PubMed  CAS  Google Scholar 

  • Zhu XZ, Luo LG (1992) Effect of nitroprusside (nitric oxide) on endogenous dopamine release from rat striatal slices. J Neurochem 59:932–935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the helpful technical support provided by C.A da-Silva, L.P. Nucci-da-Silva, A. Schiaveto-de-Souza and M. Bermúdez-Echeverry who contributed with the development of this study in several ways. The authors would like to thank Dr. F.S. Guimarães (FMRP-USP) for his helpful comments in preparing the manuscript and for his expert statistical advice. The authors were recipients of CNPq, FAPESP and CAPES fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Del Bel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzarini, M., Salum, C. & Del Bel, E.A. Combined treatment of ascorbic acid or alpha-tocopherol with dopamine receptor antagonist or nitric oxide synthase inhibitor potentiates cataleptic effect in mice. Psychopharmacology 181, 71–79 (2005). https://doi.org/10.1007/s00213-005-2222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2222-6

Keywords

Navigation