Skip to main content
Log in

A positron emission tomography (PET) study of cerebral dopamine D2 and serotonine 5-HT2A receptor occupancy in patients treated with cyamemazine (Tercian)

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cyamemazine (Tercian) is an antipsychotic drug with anxiolytic properties. Recently, an in vitro study showed that cyamemazine possesses high affinity for serotonin 5-HT2A receptors, which was fourfold higher than its affinity for dopamine D2 receptors (Hameg et al. 2003).

Objectives

The aim of this study is to confirm these previous data in vivo in patients treated with clinically relevant doses of Tercian.

Methods

Eight patients received 37.5, 75, 150 or 300 mg/day of Tercian depending on their symptomatology. Dopamine D2 and serotonin 5-HT2A receptor occupancies (RO) were assessed at steady-state plasma levels of cyamemazine with positron emission tomography (PET), using [11C]raclopride and [11C]N-methyl-spiperone, respectively. The effective plasma level of the drug leading to 50% of receptor occupancy was estimated by fitting RO with plasma levels of cyamemazine at the time of the PET scan.

Results

Cyamemazine induced near saturation of 5-HT2A receptors (RO=62.1–98.2%) in the frontal cortex even at low plasma levels of the drug. On the contrary, occupancy of striatal D2 receptors increased with plasma levels, and no saturation was obtained even at high plasma levels (RO=25.2–74.9%). The effective plasma level of cyamemazine leading to 50% of D2 receptor occupancy was fourfold higher than that for 5-HT2A receptors. Accordingly, individual 5-HT2A/D2 RO ratios ranged from 1.26 to 2.68. No patients presented relevant increased prolactin levels, and only mild extrapyramidal side effects were noticed on Simpson and Angus Scale.

Conclusion

This in vivo binding study conducted in patients confirms previous in vitro findings indicating that cyamemazine has a higher affinity for serotonin 5-HT2A receptors compared to dopamine D2 receptors. In the dose range 37.5–300 mg, levels of dopamine D2 occupancy remained below the level for motor side effects observed with typical antipsychotics and is likely to explain the low propensity of the drug to induce extrapyramidal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonini A, Leenders K, Reist H, Thomann R, Beer H, Locher J (1993) Effects of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and 11C-raclopride. Arch Neurol 50(5):474–480

    Google Scholar 

  • Barnes TRE (1989) A rating scale for drug-induced akathisia. Br J Psychiatry 154:672–676

    Google Scholar 

  • Bigliani V, Pilowski LS (1999) In vivo neuropharmacology of schizophrenia. Br J Psychiatry 194(suppl 38):23–33

    Google Scholar 

  • Bourin M, Nic Dhonnchadha BA, Colombel MC, Dib M, Hascoët M (2001) Cyamemazine as an anxiolytic drug on the elevated plus maze and light/dark paradigm in mice. Behav Brain Res 124:87–95

    Google Scholar 

  • Bourin M, Dailly E, Hameg A, Dib M, Garay RP, Hascoët M (2004a) A study of the antipsychotic action of cyamemazine in mouse behavioral models. Collegium Internationale Neuro-Psychopharmacologicum/XXIVth CINP Congress. Paris, June 20–24, 2004

  • Bourin M, Dailly E, Hascoet M (2004b). Preclinical and clinical pharmacology of cyamemazine: anxiolytic effects and prevention of alcohol and benzodiazepine withdrawal syndrome. CNS Drug Rev 10(3):219–229

    Google Scholar 

  • Brunot A, Lachaux B, Sontag H, Casadebaig F, Philippe A, Rouillon F et al (2002) Pharmaco-epidemiological study on antipsychotic drug prescription in French psychiatry: patient characteristics, antipsychotic treatment, and care management for schizophrenia. Encephale 28(2):129–138

    CAS  PubMed  Google Scholar 

  • Daniel D (1995) Metabolism of psychotropic drugs: pharmacological and clinical relevance. Pol J Pharmacol 47:367–379

    Google Scholar 

  • Dannals RF, Ravert HT, Wilson AA, Wagner HN (1986) An improved synthesis of (3-N-[11C]methyl)spiperone. Appl Radiat Isotopes 37:433–434

    Google Scholar 

  • Ehrin E, Gawell L, Högberg T, de Paulis S, Ström P (1987). Synthesis of [methoxy-3H]- and [methoxy-11C]-labelled raclopride. Specific dopamine-D2 receptor ligands. J Labelled Compd Radiopharm 24:931–940

    Google Scholar 

  • Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]-raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Google Scholar 

  • Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic naive schizophrenic patients. Arch Gen Psychiatry 47:213–219

    Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    CAS  PubMed  Google Scholar 

  • Farde L, Nordstrom AL, Nyberg S, Halldin C, Sedvall G (1994) D1-, D2- and 5-HT2 receptor occupancy in clozapine treated patients. J Clin Psychiatry 55:9(suppl B):67–69

    PubMed  Google Scholar 

  • Fourrier A, Gasquet I, Allicar MP, Bouhassira M, Lépine JP, Bégaud B (2000) Patterns of neuroleptic drug prescription: a national cross-sectional survey of a random sample of French psychiatrists. J Clin Pharmacol 49:80–86

    Article  CAS  PubMed  Google Scholar 

  • Gury C, Berchot F, Fabre C, Surugue J, Welcomme N (2000) Analysis of neuroleptics prescriptions in five specialized hospitals: comparison between hospital prescriptions and discharge prescriptions. Inf Psychiatr 8:954–963

    Google Scholar 

  • Gury C, Simo E, Fabre C, Surugue J, Welcomme N (2004) Prescriptions of antipsychotic drugs in five specialized hospital centers in 2002: comparative analysis with 1998. Collegium Internationale Neuro-Psychopharmacologicum/XXIVth CINP Congress. Paris, June 20–24, 2004

    Google Scholar 

  • Guy W (1976) Clinical Global Impression. ECDEU Assessment Manual for Psychopharmacology, ECDEU: National Institutes of Health, pp 218–222

    Google Scholar 

  • Halldin C, Farde L, Hogberg T, Mohell N, Hall H, Suhara T, Karlsson P, Nakashima Y, Swahn CG (1995) Carbon-11-FLB457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36:1275–1281

    Google Scholar 

  • Hameg A, Bayle F, Nuss P, Dupuis P, Garay PR, Dib M (2003) Affinity of cyamemazine, an anxiolytic antipsychotic drug, for human recombinant dopamine versus serotonin receptor subtypes. Biochem Pharmacol 7497:1–6

    Google Scholar 

  • Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55

    Google Scholar 

  • Hietala J, Syvalahti E, Vuorio K, Nagren K, Lehikoinen P, Ruotsalainen U, Rakkolainen V, Lehtinen V, Wagelius U (1994) Stratial D2 dopamine receptor characteristics in neuroleptic-naive scizophrenic patients studied with positron emission tomography. Arch Gen Psychiatry 51(2):116–123

    Google Scholar 

  • Iyo M, Yamasaki T (1993) The detection of age-related decrease of dopamine D1, D2 and serotonin 5-HT2 receptors in living human brain. Prog Neuro-psychopharmacol Biol Psychiatry 17:415–421

    Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Wilson A, DaSilva J, Houle S (1996) The D2 receptor occupancy profile of loxapine determined using PET. Neuropsychopharmacology 15:562–566

    Google Scholar 

  • Kapur S, Zipursky R, Roy P, Jones C, Remington G, Reed K, Houle S (1997) The relationship between D2 receptor occupancy and plasma levels on low dose oral haloperidol: a PET study. Psychopharmacology 131:148–152

    Google Scholar 

  • Kapur S, Zipursky RB, Remington G, Jones C, Da Silva J, Wilson AA, Houle S (1998) 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 155(7):921–928

    Google Scholar 

  • Kapur S, Zipursky R, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156(2):286–293

    Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response and side effects: a double blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  CAS  PubMed  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    CAS  PubMed  Google Scholar 

  • Lammerstma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158

    Article  CAS  PubMed  Google Scholar 

  • Logan J, Fowler JS, Wolf AP, Fowler JS, Brodie JD, Angrist B, Volkow ND, Gatley SJ (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Google Scholar 

  • Martinot JL, Paillère-Martinot ML, Lo’ch C, Hardy P, Poirier MF, Mazoyer B, Beaufils B, Maziere B, Allilaire JF, Syrota A (1991) The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br bromolisuride. Br J Psychiatry 158:346–350

    Google Scholar 

  • Nordström AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin G, Uppfeldt G (1993). Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects—a double blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Google Scholar 

  • Nordström AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2 and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152 (10):1444–1449

    Google Scholar 

  • Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B (1993) 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology 110:265–272

    Google Scholar 

  • Nyberg S, Nakashima Y, Nordström AL, Halldin C, Farde L (1996) Positron emission tomography of in-vivo binding characteristics of atypical antipsychotic drugs. Review of D2 and 5-HT2 receptor occupancy studies and clinical response. Br J Psychiatry 168(suppl 29):40–44

    Google Scholar 

  • Nyberg S, Nilsson U, Okubo Y, Halldin C, Farde L (1998) Implication of brain imaging for the management of schizophrenia. Int Clin Psychopharmacol 13(suppl 3):S15–S20

    Google Scholar 

  • Nyberg S, Eriksson L, Oxenstierna G, Halldin C, Farde L (1999) Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry 156(6):869–875

    CAS  PubMed  Google Scholar 

  • Okubo Y, Sahara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (2000) Serotonin 5-HT2 receptors in schizophrenic patients studied by positron emission tomography. Life Sci 66(25):2455–2464

    Google Scholar 

  • Radat F (1995) Cyamemazine:traitement symptomatique desdimensions anxieuses, impulsives et agressives. Inf Psychiatr 10:967–968

    Google Scholar 

  • Reimold M, Mueller-Schauenburg W, Becker GA, Reischl G, Dohmen BM, Bares R (2004) Non-invasive assessment of distribution volume ratios and binding potential: tissue heterogeneity and interindividually averaged time–activity curves. Eur J Nucl Med Mol Imaging 31(4):564–577

    Google Scholar 

  • Richelson E (1999) Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry 60(suppl 10):5–14

    Google Scholar 

  • Sedvall G, Pauli S, Farde L, Karlsson P, Nyberg S, Nordström AL (1995). Recent developments in PET scan imaging of neuroreceptors in schizophrenia. Isr J Psychiatry Relat Sci 32(1):22–29

    Google Scholar 

  • Simpson GM, Angus JWS (1970) A rating scale for extrapyramidal side effects. Acta Psychiatr Scand 212:11–19

    CAS  Google Scholar 

  • Trichard C, Paillère-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL (1998) Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpiride in schizophrenic patients. Am J Psychiatry 155:505–508

    Google Scholar 

  • Varga J, Szabo Z (2002) Modified regression model for the Logan plot. J Cereb Blood Flow Metab 22:240–244

    Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J et al (1996) Measuring age-related changes in dopamine D2 receptors with 11C-raclopride and 18F-N-methylspiroperidol. Psychiatry Res 67:11–16

    Google Scholar 

  • Wang GJ, Volkow ND, Logan J, Fowler JS et al (1995) Evaluation of age-related changes in serotonin 5-HT2 and dopamine D2 receptor availability in healthy human subjects. Life Sci 56(14):249–253

    Google Scholar 

  • Yang YK, Yu L, Yeh TL, Chiu NT, Chen PS, Lee IH (2004) Associated alterations of stratial dopamine D2/D3 receptor and transporter binding in drug-naive patients with schizophrenia: a dual-isotope SPECT study. Am J Psychiatry 161(8):1496–1498

    Google Scholar 

Download references

Acknowledgements

We thank H.-J. Machulla for his help in radiotracer preparations, B.M. Dohmen for the administrative management at the PET site, M.-P. Thomas for her clinical research assistance, C. Staner for healthy volunteer management and C. Ziegler for patient management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hodé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodé, Y., Reimold, M., Demazières, A. et al. A positron emission tomography (PET) study of cerebral dopamine D2 and serotonine 5-HT2A receptor occupancy in patients treated with cyamemazine (Tercian). Psychopharmacology 180, 377–384 (2005). https://doi.org/10.1007/s00213-005-2172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2172-z

Keywords

Navigation